configs.py 5.06 KB
Newer Older
Allen Wang's avatar
Allen Wang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Lint as: python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Configuration utils for image classification experiments."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import dataclasses

from official.vision.image_classification import dataset_factory
from official.vision.image_classification.configs import base_configs
from official.vision.image_classification.efficientnet import efficientnet_config
from official.vision.image_classification.resnet import resnet_config


@dataclasses.dataclass
class EfficientNetImageNetConfig(base_configs.ExperimentConfig):
  """Base configuration to train efficientnet-b0 on ImageNet.

  Attributes:
    export: An `ExportConfig` instance
    runtime: A `RuntimeConfig` instance.
    dataset: A `DatasetConfig` instance.
    train: A `TrainConfig` instance.
    evaluation: An `EvalConfig` instance.
    model: A `ModelConfig` instance.

  """
  export: base_configs.ExportConfig = base_configs.ExportConfig()
  runtime: base_configs.RuntimeConfig = base_configs.RuntimeConfig()
  train_dataset: dataset_factory.DatasetConfig = \
      dataset_factory.ImageNetConfig(split='train')
  validation_dataset: dataset_factory.DatasetConfig = \
      dataset_factory.ImageNetConfig(split='validation')
  train: base_configs.TrainConfig = base_configs.TrainConfig(
      resume_checkpoint=True,
      epochs=500,
      steps=None,
      callbacks=base_configs.CallbacksConfig(enable_checkpoint_and_export=True,
                                             enable_tensorboard=True),
      metrics=['accuracy', 'top_5'],
Allen Wang's avatar
Allen Wang committed
55
      time_history=base_configs.TimeHistoryConfig(log_steps=100),
Allen Wang's avatar
Allen Wang committed
56
      tensorboard=base_configs.TensorboardConfig(track_lr=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
57
58
                                                 write_model_weights=False),
      steps_per_loop=1)
Allen Wang's avatar
Allen Wang committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
  evaluation: base_configs.EvalConfig = base_configs.EvalConfig(
      epochs_between_evals=1,
      steps=None)
  model: base_configs.ModelConfig = \
    efficientnet_config.EfficientNetModelConfig()


@dataclasses.dataclass
class ResNetImagenetConfig(base_configs.ExperimentConfig):
  """Base configuration to train resnet-50 on ImageNet."""
  export: base_configs.ExportConfig = base_configs.ExportConfig()
  runtime: base_configs.RuntimeConfig = base_configs.RuntimeConfig()
  train_dataset: dataset_factory.DatasetConfig = \
      dataset_factory.ImageNetConfig(split='train',
                                     one_hot=False,
                                     mean_subtract=True,
                                     standardize=True)
  validation_dataset: dataset_factory.DatasetConfig = \
      dataset_factory.ImageNetConfig(split='validation',
                                     one_hot=False,
                                     mean_subtract=True,
                                     standardize=True)
  train: base_configs.TrainConfig = base_configs.TrainConfig(
      resume_checkpoint=True,
      epochs=90,
      steps=None,
      callbacks=base_configs.CallbacksConfig(enable_checkpoint_and_export=True,
                                             enable_tensorboard=True),
      metrics=['accuracy', 'top_5'],
Allen Wang's avatar
Allen Wang committed
88
      time_history=base_configs.TimeHistoryConfig(log_steps=100),
Allen Wang's avatar
Allen Wang committed
89
      tensorboard=base_configs.TensorboardConfig(track_lr=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
90
91
                                                 write_model_weights=False),
      steps_per_loop=1)
Allen Wang's avatar
Allen Wang committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
  evaluation: base_configs.EvalConfig = base_configs.EvalConfig(
      epochs_between_evals=1,
      steps=None)
  model: base_configs.ModelConfig = resnet_config.ResNetModelConfig()


def get_config(model: str, dataset: str) -> base_configs.ExperimentConfig:
  """Given model and dataset names, return the ExperimentConfig."""
  dataset_model_config_map = {
      'imagenet': {
          'efficientnet': EfficientNetImageNetConfig(),
          'resnet': ResNetImagenetConfig(),
      }
  }
  try:
    return dataset_model_config_map[dataset][model]
  except KeyError:
    if dataset not in dataset_model_config_map:
      raise KeyError('Invalid dataset received. Received: {}. Supported '
                     'datasets include: {}'.format(
                         dataset,
                         ', '.join(dataset_model_config_map.keys())))
    raise KeyError('Invalid model received. Received: {}. Supported models for'
                   '{} include: {}'.format(
                       model,
                       dataset,
                       ', '.join(dataset_model_config_map[dataset].keys())))