model_builder.py 19.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A function to build a DetectionModel from configuration."""
from object_detection.builders import anchor_generator_builder
from object_detection.builders import box_coder_builder
from object_detection.builders import box_predictor_builder
from object_detection.builders import hyperparams_builder
from object_detection.builders import image_resizer_builder
from object_detection.builders import losses_builder
from object_detection.builders import matcher_builder
from object_detection.builders import post_processing_builder
from object_detection.builders import region_similarity_calculator_builder as sim_calc
26
27
from object_detection.core import balanced_positive_negative_sampler as sampler
from object_detection.core import target_assigner
28
29
30
31
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.meta_architectures import rfcn_meta_arch
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res
32
33
from object_detection.models import faster_rcnn_inception_v2_feature_extractor as frcnn_inc_v2
from object_detection.models import faster_rcnn_nas_feature_extractor as frcnn_nas
34
from object_detection.models import faster_rcnn_pnas_feature_extractor as frcnn_pnas
35
from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as frcnn_resnet_v1
36
from object_detection.models import ssd_resnet_v1_fpn_feature_extractor as ssd_resnet_v1_fpn
37
from object_detection.models import ssd_resnet_v1_ppn_feature_extractor as ssd_resnet_v1_ppn
38
from object_detection.models.embedded_ssd_mobilenet_v1_feature_extractor import EmbeddedSSDMobileNetV1FeatureExtractor
39
from object_detection.models.ssd_inception_v2_feature_extractor import SSDInceptionV2FeatureExtractor
40
from object_detection.models.ssd_inception_v3_feature_extractor import SSDInceptionV3FeatureExtractor
41
from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor
42
43
from object_detection.models.ssd_mobilenet_v1_fpn_feature_extractor import SSDMobileNetV1FpnFeatureExtractor
from object_detection.models.ssd_mobilenet_v1_ppn_feature_extractor import SSDMobileNetV1PpnFeatureExtractor
44
from object_detection.models.ssd_mobilenet_v2_feature_extractor import SSDMobileNetV2FeatureExtractor
45
from object_detection.predictors import rfcn_box_predictor
46
47
48
49
50
from object_detection.protos import model_pb2

# A map of names to SSD feature extractors.
SSD_FEATURE_EXTRACTOR_CLASS_MAP = {
    'ssd_inception_v2': SSDInceptionV2FeatureExtractor,
51
    'ssd_inception_v3': SSDInceptionV3FeatureExtractor,
52
    'ssd_mobilenet_v1': SSDMobileNetV1FeatureExtractor,
53
54
    'ssd_mobilenet_v1_fpn': SSDMobileNetV1FpnFeatureExtractor,
    'ssd_mobilenet_v1_ppn': SSDMobileNetV1PpnFeatureExtractor,
55
    'ssd_mobilenet_v2': SSDMobileNetV2FeatureExtractor,
56
57
58
    'ssd_resnet50_v1_fpn': ssd_resnet_v1_fpn.SSDResnet50V1FpnFeatureExtractor,
    'ssd_resnet101_v1_fpn': ssd_resnet_v1_fpn.SSDResnet101V1FpnFeatureExtractor,
    'ssd_resnet152_v1_fpn': ssd_resnet_v1_fpn.SSDResnet152V1FpnFeatureExtractor,
59
60
61
62
63
    'ssd_resnet50_v1_ppn': ssd_resnet_v1_ppn.SSDResnet50V1PpnFeatureExtractor,
    'ssd_resnet101_v1_ppn':
        ssd_resnet_v1_ppn.SSDResnet101V1PpnFeatureExtractor,
    'ssd_resnet152_v1_ppn':
        ssd_resnet_v1_ppn.SSDResnet152V1PpnFeatureExtractor,
64
    'embedded_ssd_mobilenet_v1': EmbeddedSSDMobileNetV1FeatureExtractor,
65
66
67
68
}

# A map of names to Faster R-CNN feature extractors.
FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP = {
Vivek Rathod's avatar
Vivek Rathod committed
69
70
    'faster_rcnn_nas':
    frcnn_nas.FasterRCNNNASFeatureExtractor,
71
72
    'faster_rcnn_pnas':
    frcnn_pnas.FasterRCNNPNASFeatureExtractor,
73
74
75
76
    'faster_rcnn_inception_resnet_v2':
    frcnn_inc_res.FasterRCNNInceptionResnetV2FeatureExtractor,
    'faster_rcnn_inception_v2':
    frcnn_inc_v2.FasterRCNNInceptionV2FeatureExtractor,
77
78
79
80
81
82
83
84
85
    'faster_rcnn_resnet50':
    frcnn_resnet_v1.FasterRCNNResnet50FeatureExtractor,
    'faster_rcnn_resnet101':
    frcnn_resnet_v1.FasterRCNNResnet101FeatureExtractor,
    'faster_rcnn_resnet152':
    frcnn_resnet_v1.FasterRCNNResnet152FeatureExtractor,
}


86
87
def build(model_config, is_training, add_summaries=True,
          add_background_class=True):
88
89
90
91
92
93
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.
94
    add_summaries: Whether to add tensorflow summaries in the model graph.
95
96
97
98
    add_background_class: Whether to add an implicit background class to one-hot
      encodings of groundtruth labels. Set to false if using groundtruth labels
      with an explicit background class or using multiclass scores instead of
      truth in the case of distillation. Ignored in the case of faster_rcnn.
99
100
101
102
103
104
105
106
107
108
  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
109
110
    return _build_ssd_model(model_config.ssd, is_training, add_summaries,
                            add_background_class)
111
  if meta_architecture == 'faster_rcnn':
112
113
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
                                    add_summaries)
114
115
116
117
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))


def _build_ssd_feature_extractor(feature_extractor_config, is_training,
118
                                 reuse_weights=None):
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
135
  pad_to_multiple = feature_extractor_config.pad_to_multiple
136
  use_explicit_padding = feature_extractor_config.use_explicit_padding
137
  use_depthwise = feature_extractor_config.use_depthwise
138
139
  conv_hyperparams = hyperparams_builder.build(
      feature_extractor_config.conv_hyperparams, is_training)
140
141
  override_base_feature_extractor_hyperparams = (
      feature_extractor_config.override_base_feature_extractor_hyperparams)
142
143
144
145
146

  if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

  feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
  kwargs = {
      'is_training':
          is_training,
      'depth_multiplier':
          depth_multiplier,
      'min_depth':
          min_depth,
      'pad_to_multiple':
          pad_to_multiple,
      'conv_hyperparams_fn':
          conv_hyperparams,
      'reuse_weights':
          reuse_weights,
      'use_explicit_padding':
          use_explicit_padding,
      'use_depthwise':
          use_depthwise,
      'override_base_feature_extractor_hyperparams':
          override_base_feature_extractor_hyperparams
  }

  if feature_extractor_config.HasField('fpn'):
    kwargs.update({
        'fpn_min_level': feature_extractor_config.fpn.min_level,
        'fpn_max_level': feature_extractor_config.fpn.max_level,
    })

  return feature_extractor_class(**kwargs)
175
176


177
178
def _build_ssd_model(ssd_config, is_training, add_summaries,
                     add_background_class=True):
179
180
181
182
183
184
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
185
    add_summaries: Whether to add tf summaries in the model.
186
187
188
189
    add_background_class: Whether to add an implicit background class to one-hot
      encodings of groundtruth labels. Set to false if using groundtruth labels
      with an explicit background class or using multiclass scores instead of
      truth in the case of distillation.
190
191
  Returns:
    SSDMetaArch based on the config.
192

193
194
195
196
197
198
199
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes

  # Feature extractor
200
  feature_extractor = _build_ssd_feature_extractor(
201
      feature_extractor_config=ssd_config.feature_extractor,
202
      is_training=is_training)
203
204
205
206
207

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
208
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
209
  negative_class_weight = ssd_config.negative_class_weight
210
211
212
213
214
215
216
217
218
  ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
                                                  ssd_config.box_predictor,
                                                  is_training, num_classes)
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
219
220
   localization_weight, hard_example_miner,
   random_example_sampler) = losses_builder.build(ssd_config.loss)
221
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
222
  normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize
223
224
225
226
227
228
229
230
231

  return ssd_meta_arch.SSDMetaArch(
      is_training,
      anchor_generator,
      ssd_box_predictor,
      box_coder,
      feature_extractor,
      matcher,
      region_similarity_calculator,
232
      encode_background_as_zeros,
233
      negative_class_weight,
234
235
236
237
238
239
240
241
      image_resizer_fn,
      non_max_suppression_fn,
      score_conversion_fn,
      classification_loss,
      localization_loss,
      classification_weight,
      localization_weight,
      normalize_loss_by_num_matches,
242
      hard_example_miner,
243
      add_summaries=add_summaries,
244
245
      normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
246
      inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
247
248
      add_background_class=add_background_class,
      random_example_sampler=random_example_sampler)
249
250
251


def _build_faster_rcnn_feature_extractor(
252
253
    feature_extractor_config, is_training, reuse_weights=None,
    inplace_batchnorm_update=False):
254
255
256
257
258
259
260
  """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.
261
262
263
264
265
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.
266
267
268
269
270
271
272

  Returns:
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
273
274
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
275
276
277
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
278
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable
279
280
281
282
283
284
285

  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
286
287
      is_training, first_stage_features_stride,
      batch_norm_trainable, reuse_weights)
288
289


290
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries):
291
292
293
294
295
296
297
  """Builds a Faster R-CNN or R-FCN detection model based on the model config.

  Builds R-FCN model if the second_stage_box_predictor in the config is of type
  `rfcn_box_predictor` else builds a Faster R-CNN model.

  Args:
    frcnn_config: A faster_rcnn.proto object containing the config for the
298
      desired FasterRCNNMetaArch or RFCNMetaArch.
299
    is_training: True if this model is being built for training purposes.
300
    add_summaries: Whether to add tf summaries in the model.
301
302
303

  Returns:
    FasterRCNNMetaArch based on the config.
304

305
306
307
308
309
310
311
312
  Raises:
    ValueError: If frcnn_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = frcnn_config.num_classes
  image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)

  feature_extractor = _build_faster_rcnn_feature_extractor(
313
314
      frcnn_config.feature_extractor, is_training,
      frcnn_config.inplace_batchnorm_update)
315

316
  number_of_stages = frcnn_config.number_of_stages
317
318
319
  first_stage_anchor_generator = anchor_generator_builder.build(
      frcnn_config.first_stage_anchor_generator)

320
321
322
323
  first_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'proposal',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
324
  first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
325
  first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build(
326
327
328
329
330
      frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
  first_stage_box_predictor_kernel_size = (
      frcnn_config.first_stage_box_predictor_kernel_size)
  first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
  first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
331
332
333
  first_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.first_stage_positive_balance_fraction,
      is_static=frcnn_config.use_static_balanced_label_sampler)
334
335
336
337
338
339
340
341
342
343
344
  first_stage_nms_score_threshold = frcnn_config.first_stage_nms_score_threshold
  first_stage_nms_iou_threshold = frcnn_config.first_stage_nms_iou_threshold
  first_stage_max_proposals = frcnn_config.first_stage_max_proposals
  first_stage_loc_loss_weight = (
      frcnn_config.first_stage_localization_loss_weight)
  first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight

  initial_crop_size = frcnn_config.initial_crop_size
  maxpool_kernel_size = frcnn_config.maxpool_kernel_size
  maxpool_stride = frcnn_config.maxpool_stride

345
346
347
348
  second_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'detection',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
349
350
351
352
353
354
  second_stage_box_predictor = box_predictor_builder.build(
      hyperparams_builder.build,
      frcnn_config.second_stage_box_predictor,
      is_training=is_training,
      num_classes=num_classes)
  second_stage_batch_size = frcnn_config.second_stage_batch_size
355
356
357
  second_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.second_stage_balance_fraction,
      is_static=frcnn_config.use_static_balanced_label_sampler)
358
359
360
361
  (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
  ) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
  second_stage_localization_loss_weight = (
      frcnn_config.second_stage_localization_loss_weight)
362
363
364
  second_stage_classification_loss = (
      losses_builder.build_faster_rcnn_classification_loss(
          frcnn_config.second_stage_classification_loss))
365
366
  second_stage_classification_loss_weight = (
      frcnn_config.second_stage_classification_loss_weight)
367
368
  second_stage_mask_prediction_loss_weight = (
      frcnn_config.second_stage_mask_prediction_loss_weight)
369
370
371
372
373
374
375
376

  hard_example_miner = None
  if frcnn_config.HasField('hard_example_miner'):
    hard_example_miner = losses_builder.build_hard_example_miner(
        frcnn_config.hard_example_miner,
        second_stage_classification_loss_weight,
        second_stage_localization_loss_weight)

377
  use_matmul_crop_and_resize = (frcnn_config.use_matmul_crop_and_resize)
378
379
  clip_anchors_to_image = (
      frcnn_config.clip_anchors_to_image)
380

381
382
383
384
385
  common_kwargs = {
      'is_training': is_training,
      'num_classes': num_classes,
      'image_resizer_fn': image_resizer_fn,
      'feature_extractor': feature_extractor,
386
      'number_of_stages': number_of_stages,
387
      'first_stage_anchor_generator': first_stage_anchor_generator,
388
      'first_stage_target_assigner': first_stage_target_assigner,
389
      'first_stage_atrous_rate': first_stage_atrous_rate,
390
391
      'first_stage_box_predictor_arg_scope_fn':
      first_stage_box_predictor_arg_scope_fn,
392
393
394
395
      'first_stage_box_predictor_kernel_size':
      first_stage_box_predictor_kernel_size,
      'first_stage_box_predictor_depth': first_stage_box_predictor_depth,
      'first_stage_minibatch_size': first_stage_minibatch_size,
396
      'first_stage_sampler': first_stage_sampler,
397
398
399
400
401
      'first_stage_nms_score_threshold': first_stage_nms_score_threshold,
      'first_stage_nms_iou_threshold': first_stage_nms_iou_threshold,
      'first_stage_max_proposals': first_stage_max_proposals,
      'first_stage_localization_loss_weight': first_stage_loc_loss_weight,
      'first_stage_objectness_loss_weight': first_stage_obj_loss_weight,
402
      'second_stage_target_assigner': second_stage_target_assigner,
403
      'second_stage_batch_size': second_stage_batch_size,
404
      'second_stage_sampler': second_stage_sampler,
405
406
407
408
409
      'second_stage_non_max_suppression_fn':
      second_stage_non_max_suppression_fn,
      'second_stage_score_conversion_fn': second_stage_score_conversion_fn,
      'second_stage_localization_loss_weight':
      second_stage_localization_loss_weight,
410
411
      'second_stage_classification_loss':
      second_stage_classification_loss,
412
413
      'second_stage_classification_loss_weight':
      second_stage_classification_loss_weight,
414
      'hard_example_miner': hard_example_miner,
415
      'add_summaries': add_summaries,
416
417
      'use_matmul_crop_and_resize': use_matmul_crop_and_resize,
      'clip_anchors_to_image': clip_anchors_to_image
418
  }
419

420
421
  if isinstance(second_stage_box_predictor,
                rfcn_box_predictor.RfcnBoxPredictor):
422
423
424
425
426
427
428
429
430
    return rfcn_meta_arch.RFCNMetaArch(
        second_stage_rfcn_box_predictor=second_stage_box_predictor,
        **common_kwargs)
  else:
    return faster_rcnn_meta_arch.FasterRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
431
432
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
433
        **common_kwargs)