icp_util.py 4.6 KB
Newer Older
Reza Mahjourian's avatar
Reza Mahjourian committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Utility functions for transformations."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf

# Sample pointcloud with shape (1568, 3).
LIDAR_CLOUD_PATH = 'ops/testdata/pointcloud.npy'


def get_transformation_matrix(transform):
  """Converts [tx, ty, tz, rx, ry, rz] to a transform matrix."""
  rx = transform[3]
  ry = transform[4]
  rz = transform[5]

  rz = tf.clip_by_value(rz, -np.pi, np.pi)
  ry = tf.clip_by_value(ry, -np.pi, np.pi)
  rx = tf.clip_by_value(rx, -np.pi, np.pi)

  cos_rx = tf.cos(rx)
  sin_rx = tf.sin(rx)
  rotx_1 = tf.stack([1.0, 0.0, 0.0])
  rotx_2 = tf.stack([0.0, cos_rx, -sin_rx])
  rotx_3 = tf.stack([0.0, sin_rx, cos_rx])
  xmat = tf.stack([rotx_1, rotx_2, rotx_3])

  cos_ry = tf.cos(ry)
  sin_ry = tf.sin(ry)
  roty_1 = tf.stack([cos_ry, 0.0, sin_ry])
  roty_2 = tf.stack([0.0, 1.0, 0.0])
  roty_3 = tf.stack([-sin_ry, 0.0, cos_ry])
  ymat = tf.stack([roty_1, roty_2, roty_3])

  cos_rz = tf.cos(rz)
  sin_rz = tf.sin(rz)
  rotz_1 = tf.stack([cos_rz, -sin_rz, 0.0])
  rotz_2 = tf.stack([sin_rz, cos_rz, 0.0])
  rotz_3 = tf.stack([0.0, 0.0, 1.0])
  zmat = tf.stack([rotz_1, rotz_2, rotz_3])

  rotate = tf.matmul(tf.matmul(xmat, ymat), zmat)

  translate = transform[:3]
  mat = tf.concat([rotate, tf.expand_dims(translate, 1)], axis=1)

  hom_filler = tf.constant([0.0, 0.0, 0.0, 1.0], shape=[1, 4], dtype=tf.float32)
  mat = tf.concat([mat, hom_filler], axis=0)
  return mat


def np_get_transformation_matrix(transform):
  """Converts [tx, ty, tz, rx, ry, rz] to a transform matrix."""
  rx = transform[3]
  ry = transform[4]
  rz = transform[5]

  rz = np.clip(rz, -np.pi, np.pi)
  ry = np.clip(ry, -np.pi, np.pi)
  rx = np.clip(rx, -np.pi, np.pi)

  cos_rx = np.cos(rx)
  sin_rx = np.sin(rx)
  rotx_1 = np.stack([1.0, 0.0, 0.0])
  rotx_2 = np.stack([0.0, cos_rx, -sin_rx])
  rotx_3 = np.stack([0.0, sin_rx, cos_rx])
  xmat = np.stack([rotx_1, rotx_2, rotx_3])

  cos_ry = np.cos(ry)
  sin_ry = np.sin(ry)
  roty_1 = np.stack([cos_ry, 0.0, sin_ry])
  roty_2 = np.stack([0.0, 1.0, 0.0])
  roty_3 = np.stack([-sin_ry, 0.0, cos_ry])
  ymat = np.stack([roty_1, roty_2, roty_3])

  cos_rz = np.cos(rz)
  sin_rz = np.sin(rz)
  rotz_1 = np.stack([cos_rz, -sin_rz, 0.0])
  rotz_2 = np.stack([sin_rz, cos_rz, 0.0])
  rotz_3 = np.stack([0.0, 0.0, 1.0])
  zmat = np.stack([rotz_1, rotz_2, rotz_3])

  rotate = np.dot(np.dot(xmat, ymat), zmat)

  translate = transform[:3]
  mat = np.concatenate((rotate, np.expand_dims(translate, 1)), axis=1)

  hom_filler = np.array([[0.0, 0.0, 0.0, 1.0]], dtype=np.float32)
  mat = np.concatenate((mat, hom_filler), axis=0)
  return mat


def transform_cloud_xyz(cloud, transform):
  num_points = cloud.shape.as_list()[0]
  ones = tf.ones(shape=[num_points, 1], dtype=tf.float32)
  hom_cloud = tf.concat([cloud, ones], axis=1)
  hom_cloud_t = tf.transpose(hom_cloud)
  mat = get_transformation_matrix(transform)
  transformed_cloud = tf.matmul(mat, hom_cloud_t)
  transformed_cloud = tf.transpose(transformed_cloud)
  transformed_cloud = transformed_cloud[:, :3]
  return transformed_cloud


def np_transform_cloud_xyz(cloud, transform):
  num_points = cloud.shape[0]
  ones = np.ones(shape=[num_points, 1], dtype=np.float32)
  hom_cloud = np.concatenate((cloud, ones), axis=1)
  hom_cloud_t = np.transpose(hom_cloud)
  mat = np_get_transformation_matrix(transform)
  transformed_cloud = np.dot(mat, hom_cloud_t)
  transformed_cloud = np.transpose(transformed_cloud)
  transformed_cloud = transformed_cloud[:, :3]
  return transformed_cloud


def batch_transform_cloud_xyz(cloud, transform):
  results = []
  cloud_items = tf.unstack(cloud)
  if len(transform.shape.as_list()) == 2:
    transform_items = tf.unstack(transform)
  else:
    transform_items = [transform] * len(cloud_items)
  for cloud_item, transform_item in zip(cloud_items, transform_items):
    results.append(transform_cloud_xyz(cloud_item, transform_item))
  return tf.stack(results)