"test/vscode:/vscode.git/clone" did not exist on "859dfa4212949c1212db066d95797dd0a9ca7a84"
gen_data.py 7.04 KB
Newer Older
Reza Mahjourian's avatar
Reza Mahjourian committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Generates data for training/validation and save it to disk."""

# Example usage:
#
# python dataset/gen_data.py \
#   --alsologtostderr \
#   --dataset_name kitti_raw_eigen \
#   --dataset_dir ~/vid2depth/dataset/kitti-raw-uncompressed \
#   --data_dir ~/vid2depth/data/kitti_raw_eigen_s3 \
#   --seq_length 3 \
#   --num_threads 12

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import itertools
import multiprocessing
import os
from absl import app
from absl import flags
from absl import logging
import dataset_loader
import numpy as np
import scipy.misc
import tensorflow as tf

gfile = tf.gfile
FLAGS = flags.FLAGS

DATASETS = [
    'kitti_raw_eigen', 'kitti_raw_stereo', 'kitti_odom', 'cityscapes', 'bike'
]

flags.DEFINE_enum('dataset_name', None, DATASETS, 'Dataset name.')
flags.DEFINE_string('dataset_dir', None, 'Location for dataset source files.')
flags.DEFINE_string('data_dir', None, 'Where to save the generated data.')
# Note: Training time grows linearly with sequence length.  Use 2 or 3.
flags.DEFINE_integer('seq_length', 3, 'Length of each training sequence.')
flags.DEFINE_integer('img_height', 128, 'Image height.')
flags.DEFINE_integer('img_width', 416, 'Image width.')
flags.DEFINE_integer(
    'num_threads', None, 'Number of worker threads. '
    'Defaults to number of CPU cores.')

flags.mark_flag_as_required('dataset_name')
flags.mark_flag_as_required('dataset_dir')
flags.mark_flag_as_required('data_dir')

# Process data in chunks for reporting progress.
NUM_CHUNKS = 100


def _generate_data():
  """Extract sequences from dataset_dir and store them in data_dir."""
  if not gfile.Exists(FLAGS.data_dir):
    gfile.MakeDirs(FLAGS.data_dir)

  global dataloader  # pylint: disable=global-variable-undefined
  if FLAGS.dataset_name == 'bike':
    dataloader = dataset_loader.Bike(FLAGS.dataset_dir,
                                     img_height=FLAGS.img_height,
                                     img_width=FLAGS.img_width,
                                     seq_length=FLAGS.seq_length)
  elif FLAGS.dataset_name == 'kitti_odom':
    dataloader = dataset_loader.KittiOdom(FLAGS.dataset_dir,
                                          img_height=FLAGS.img_height,
                                          img_width=FLAGS.img_width,
                                          seq_length=FLAGS.seq_length)
  elif FLAGS.dataset_name == 'kitti_raw_eigen':
    dataloader = dataset_loader.KittiRaw(FLAGS.dataset_dir,
                                         split='eigen',
                                         img_height=FLAGS.img_height,
                                         img_width=FLAGS.img_width,
                                         seq_length=FLAGS.seq_length)
  elif FLAGS.dataset_name == 'kitti_raw_stereo':
    dataloader = dataset_loader.KittiRaw(FLAGS.dataset_dir,
                                         split='stereo',
                                         img_height=FLAGS.img_height,
                                         img_width=FLAGS.img_width,
                                         seq_length=FLAGS.seq_length)
  elif FLAGS.dataset_name == 'cityscapes':
    dataloader = dataset_loader.Cityscapes(FLAGS.dataset_dir,
                                           img_height=FLAGS.img_height,
                                           img_width=FLAGS.img_width,
                                           seq_length=FLAGS.seq_length)
  else:
    raise ValueError('Unknown dataset')

  # The default loop below uses multiprocessing, which can make it difficult
  # to locate source of errors in data loader classes.
  # Uncomment this loop for easier debugging:

  # all_examples = {}
  # for i in range(dataloader.num_train):
  #   _gen_example(i, all_examples)
  #   logging.info('Generated: %d', len(all_examples))

  all_frames = range(dataloader.num_train)
  frame_chunks = np.array_split(all_frames, NUM_CHUNKS)

  manager = multiprocessing.Manager()
  all_examples = manager.dict()
  num_cores = multiprocessing.cpu_count()
  num_threads = num_cores if FLAGS.num_threads is None else FLAGS.num_threads
  pool = multiprocessing.Pool(num_threads)

  # Split into training/validation sets. Fixed seed for repeatability.
  np.random.seed(8964)

  if not gfile.Exists(FLAGS.data_dir):
    gfile.MakeDirs(FLAGS.data_dir)

  with gfile.Open(os.path.join(FLAGS.data_dir, 'train.txt'), 'w') as train_f:
    with gfile.Open(os.path.join(FLAGS.data_dir, 'val.txt'), 'w') as val_f:
      logging.info('Generating data...')
      for index, frame_chunk in enumerate(frame_chunks):
        all_examples.clear()
        pool.map(_gen_example_star,
                 itertools.izip(frame_chunk, itertools.repeat(all_examples)))
        logging.info('Chunk %d/%d: saving %s entries...', index + 1, NUM_CHUNKS,
                     len(all_examples))
        for _, example in all_examples.items():
          if example:
            s = example['folder_name']
            frame = example['file_name']
            if np.random.random() < 0.1:
              val_f.write('%s %s\n' % (s, frame))
            else:
              train_f.write('%s %s\n' % (s, frame))
  pool.close()
  pool.join()


def _gen_example(i, all_examples):
  """Saves one example to file.  Also adds it to all_examples dict."""
  example = dataloader.get_example_with_index(i)
  if not example:
    return
  image_seq_stack = _stack_image_seq(example['image_seq'])
  example.pop('image_seq', None)  # Free up memory.
  intrinsics = example['intrinsics']
  fx = intrinsics[0, 0]
  fy = intrinsics[1, 1]
  cx = intrinsics[0, 2]
  cy = intrinsics[1, 2]
  save_dir = os.path.join(FLAGS.data_dir, example['folder_name'])
  if not gfile.Exists(save_dir):
    gfile.MakeDirs(save_dir)
  img_filepath = os.path.join(save_dir, '%s.jpg' % example['file_name'])
  scipy.misc.imsave(img_filepath, image_seq_stack.astype(np.uint8))
  cam_filepath = os.path.join(save_dir, '%s_cam.txt' % example['file_name'])
  example['cam'] = '%f,0.,%f,0.,%f,%f,0.,0.,1.' % (fx, cx, fy, cy)
  with open(cam_filepath, 'w') as cam_f:
    cam_f.write(example['cam'])

  key = example['folder_name'] + '_' + example['file_name']
  all_examples[key] = example


def _gen_example_star(params):
  return _gen_example(*params)


def _stack_image_seq(seq):
  for i, im in enumerate(seq):
    if i == 0:
      res = im
    else:
      res = np.hstack((res, im))
  return res


def main(_):
  _generate_data()


if __name__ == '__main__':
  app.run(main)