dataset_loader.py 23.2 KB
Newer Older
Reza Mahjourian's avatar
Reza Mahjourian committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Classes to load KITTI and Cityscapes data."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import glob
import json
import os
import re
from absl import logging
import numpy as np
import scipy.misc

CITYSCAPES_CROP_BOTTOM = True  # Crop bottom 25% to remove the car hood.
CITYSCAPES_CROP_PCT = 0.75
CITYSCAPES_SAMPLE_EVERY = 2  # Sample every 2 frames to match KITTI frame rate.
BIKE_SAMPLE_EVERY = 6  # 5fps, since the bike's motion is slower.


class Bike(object):
  """Load bike video frames."""

  def __init__(self,
               dataset_dir,
               img_height=128,
               img_width=416,
               seq_length=3,
               sample_every=BIKE_SAMPLE_EVERY):
    self.dataset_dir = dataset_dir
    self.img_height = img_height
    self.img_width = img_width
    self.seq_length = seq_length
    self.sample_every = sample_every
    self.frames = self.collect_frames()
    self.num_frames = len(self.frames)
    self.num_train = self.num_frames
    logging.info('Total frames collected: %d', self.num_frames)

  def collect_frames(self):
    """Create a list of unique ids for available frames."""
    video_list = os.listdir(self.dataset_dir)
    logging.info('video_list: %s', video_list)
    frames = []
    for video in video_list:
      im_files = glob.glob(os.path.join(self.dataset_dir, video, '*.jpg'))
      im_files = sorted(im_files, key=natural_keys)
      # Adding 3 crops of the video.
      frames.extend(['A' + video + '/' + os.path.basename(f) for f in im_files])
      frames.extend(['B' + video + '/' + os.path.basename(f) for f in im_files])
      frames.extend(['C' + video + '/' + os.path.basename(f) for f in im_files])
    return frames

  def get_example_with_index(self, target_index):
    if not self.is_valid_sample(target_index):
      return False
    example = self.load_example(target_index)
    return example

  def load_intrinsics(self, unused_frame_idx, cy):
    """Load intrinsics."""
    # https://www.wired.com/2013/05/calculating-the-angular-view-of-an-iphone/
    # https://codeyarns.com/2015/09/08/how-to-compute-intrinsic-camera-matrix-for-a-camera/
    # https://stackoverflow.com/questions/39992968/how-to-calculate-field-of-view-of-the-camera-from-camera-intrinsic-matrix
    # # iPhone: These numbers are for images with resolution 720 x 1280.
    # Assuming FOV = 50.9 => fx = (1280 // 2) / math.tan(fov / 2) = 1344.8
    intrinsics = np.array([[1344.8, 0, 1280 // 2],
                           [0, 1344.8, cy],
                           [0, 0, 1.0]])
    return intrinsics

  def is_valid_sample(self, target_index):
    """Checks whether we can find a valid sequence around this frame."""
    target_video, _ = self.frames[target_index].split('/')
    start_index, end_index = get_seq_start_end(target_index,
                                               self.seq_length,
                                               self.sample_every)
    if start_index < 0 or end_index >= self.num_frames:
      return False
    start_video, _ = self.frames[start_index].split('/')
    end_video, _ = self.frames[end_index].split('/')
    if target_video == start_video and target_video == end_video:
      return True
    return False

  def load_image_raw(self, frame_id):
    """Reads the image and crops it according to first letter of frame_id."""
    crop_type = frame_id[0]
    img_file = os.path.join(self.dataset_dir, frame_id[1:])
    img = scipy.misc.imread(img_file)
    allowed_height = int(img.shape[1] * self.img_height / self.img_width)
    # Starting height for the middle crop.
    mid_crop_top = int(img.shape[0] / 2 - allowed_height / 2)
    # How much to go up or down to get the other two crops.
    height_var = int(mid_crop_top / 3)
    if crop_type == 'A':
      crop_top = mid_crop_top - height_var
      cy = allowed_height / 2 + height_var
    elif crop_type == 'B':
      crop_top = mid_crop_top
      cy = allowed_height / 2
    elif crop_type == 'C':
      crop_top = mid_crop_top + height_var
      cy = allowed_height / 2 - height_var
    else:
      raise ValueError('Unknown crop_type: %s' % crop_type)
    crop_bottom = crop_top + allowed_height + 1
    return img[crop_top:crop_bottom, :, :], cy

  def load_image_sequence(self, target_index):
    """Returns a list of images around target index."""
    start_index, end_index = get_seq_start_end(target_index,
                                               self.seq_length,
                                               self.sample_every)
    image_seq = []
    for idx in range(start_index, end_index + 1, self.sample_every):
      frame_id = self.frames[idx]
      img, cy = self.load_image_raw(frame_id)
      if idx == target_index:
        zoom_y = self.img_height / img.shape[0]
        zoom_x = self.img_width / img.shape[1]
      img = scipy.misc.imresize(img, (self.img_height, self.img_width))
      image_seq.append(img)
    return image_seq, zoom_x, zoom_y, cy

  def load_example(self, target_index):
    """Returns a sequence with requested target frame."""
    image_seq, zoom_x, zoom_y, cy = self.load_image_sequence(target_index)
    target_video, target_filename = self.frames[target_index].split('/')
    # Put A, B, C at the end for better shuffling.
    target_video = target_video[1:] + target_video[0]
    intrinsics = self.load_intrinsics(target_index, cy)
    intrinsics = self.scale_intrinsics(intrinsics, zoom_x, zoom_y)
    example = {}
    example['intrinsics'] = intrinsics
    example['image_seq'] = image_seq
    example['folder_name'] = target_video
    example['file_name'] = target_filename.split('.')[0]
    return example

  def scale_intrinsics(self, mat, sx, sy):
    out = np.copy(mat)
    out[0, 0] *= sx
    out[0, 2] *= sx
    out[1, 1] *= sy
    out[1, 2] *= sy
    return out


class KittiRaw(object):
  """Reads KITTI raw data files."""

  def __init__(self,
               dataset_dir,
               split,
               load_pose=False,
               img_height=128,
               img_width=416,
               seq_length=3):
    static_frames_file = 'dataset/kitti/static_frames.txt'
    test_scene_file = 'dataset/kitti/test_scenes_' + split + '.txt'
    with open(get_resource_path(test_scene_file), 'r') as f:
      test_scenes = f.readlines()
    self.test_scenes = [t[:-1] for t in test_scenes]
    self.dataset_dir = dataset_dir
    self.img_height = img_height
    self.img_width = img_width
    self.seq_length = seq_length
    self.load_pose = load_pose
    self.cam_ids = ['02', '03']
    self.date_list = [
        '2011_09_26', '2011_09_28', '2011_09_29', '2011_09_30', '2011_10_03'
    ]
    self.collect_static_frames(static_frames_file)
    self.collect_train_frames()

  def collect_static_frames(self, static_frames_file):
    with open(get_resource_path(static_frames_file), 'r') as f:
      frames = f.readlines()
    self.static_frames = []
    for fr in frames:
      if fr == '\n':
        continue
      unused_date, drive, frame_id = fr.split(' ')
      fid = '%.10d' % (np.int(frame_id[:-1]))
      for cam_id in self.cam_ids:
        self.static_frames.append(drive + ' ' + cam_id + ' ' + fid)

  def collect_train_frames(self):
    """Creates a list of training frames."""
    all_frames = []
    for date in self.date_list:
      date_dir = os.path.join(self.dataset_dir, date)
      drive_set = os.listdir(date_dir)
      for dr in drive_set:
        drive_dir = os.path.join(date_dir, dr)
        if os.path.isdir(drive_dir):
          if dr[:-5] in self.test_scenes:
            continue
          for cam in self.cam_ids:
            img_dir = os.path.join(drive_dir, 'image_' + cam, 'data')
            num_frames = len(glob.glob(img_dir + '/*[0-9].png'))
            for i in range(num_frames):
              frame_id = '%.10d' % i
              all_frames.append(dr + ' ' + cam + ' ' + frame_id)

    for s in self.static_frames:
      try:
        all_frames.remove(s)
      except ValueError:
        pass

    self.train_frames = all_frames
    self.num_train = len(self.train_frames)

  def is_valid_sample(self, frames, target_index):
    """Checks whether we can find a valid sequence around this frame."""
    num_frames = len(frames)
    target_drive, cam_id, _ = frames[target_index].split(' ')
    start_index, end_index = get_seq_start_end(target_index, self.seq_length)
    if start_index < 0 or end_index >= num_frames:
      return False
    start_drive, start_cam_id, _ = frames[start_index].split(' ')
    end_drive, end_cam_id, _ = frames[end_index].split(' ')
    if (target_drive == start_drive and target_drive == end_drive and
        cam_id == start_cam_id and cam_id == end_cam_id):
      return True
    return False

  def get_example_with_index(self, target_index):
    if not self.is_valid_sample(self.train_frames, target_index):
      return False
    example = self.load_example(self.train_frames, target_index)
    return example

  def load_image_sequence(self, frames, target_index):
    """Returns a sequence with requested target frame."""
    start_index, end_index = get_seq_start_end(target_index, self.seq_length)
    image_seq = []
    for index in range(start_index, end_index + 1):
      drive, cam_id, frame_id = frames[index].split(' ')
      img = self.load_image_raw(drive, cam_id, frame_id)
      if index == target_index:
        zoom_y = self.img_height / img.shape[0]
        zoom_x = self.img_width / img.shape[1]
      img = scipy.misc.imresize(img, (self.img_height, self.img_width))
      image_seq.append(img)
    return image_seq, zoom_x, zoom_y

  def load_pose_sequence(self, frames, target_index):
    """Returns a sequence of pose vectors for frames around the target frame."""
    target_drive, _, target_frame_id = frames[target_index].split(' ')
    target_pose = self.load_pose_raw(target_drive, target_frame_id)
    start_index, end_index = get_seq_start_end(target_frame_id, self.seq_length)
    pose_seq = []
    for index in range(start_index, end_index + 1):
      if index == target_frame_id:
        continue
      drive, _, frame_id = frames[index].split(' ')
      pose = self.load_pose_raw(drive, frame_id)
      # From target to index.
      pose = np.dot(np.linalg.inv(pose), target_pose)
      pose_seq.append(pose)
    return pose_seq

  def load_example(self, frames, target_index):
    """Returns a sequence with requested target frame."""
    image_seq, zoom_x, zoom_y = self.load_image_sequence(frames, target_index)
    target_drive, target_cam_id, target_frame_id = (
        frames[target_index].split(' '))
    intrinsics = self.load_intrinsics_raw(target_drive, target_cam_id)
    intrinsics = self.scale_intrinsics(intrinsics, zoom_x, zoom_y)
    example = {}
    example['intrinsics'] = intrinsics
    example['image_seq'] = image_seq
    example['folder_name'] = target_drive + '_' + target_cam_id + '/'
    example['file_name'] = target_frame_id
    if self.load_pose:
      pose_seq = self.load_pose_sequence(frames, target_index)
      example['pose_seq'] = pose_seq
    return example

  def load_pose_raw(self, drive, frame_id):
    date = drive[:10]
    pose_file = os.path.join(self.dataset_dir, date, drive, 'poses',
                             frame_id + '.txt')
    with open(pose_file, 'r') as f:
      pose = f.readline()
    pose = np.array(pose.split(' ')).astype(np.float32).reshape(3, 4)
    pose = np.vstack((pose, np.array([0, 0, 0, 1]).reshape((1, 4))))
    return pose

  def load_image_raw(self, drive, cam_id, frame_id):
    date = drive[:10]
    img_file = os.path.join(self.dataset_dir, date, drive, 'image_' + cam_id,
                            'data', frame_id + '.png')
    img = scipy.misc.imread(img_file)
    return img

  def load_intrinsics_raw(self, drive, cam_id):
    date = drive[:10]
    calib_file = os.path.join(self.dataset_dir, date, 'calib_cam_to_cam.txt')
    filedata = self.read_raw_calib_file(calib_file)
    p_rect = np.reshape(filedata['P_rect_' + cam_id], (3, 4))
    intrinsics = p_rect[:3, :3]
    return intrinsics

  # From https://github.com/utiasSTARS/pykitti/blob/master/pykitti/utils.py
  def read_raw_calib_file(self, filepath):
    """Read in a calibration file and parse into a dictionary."""
    data = {}
    with open(filepath, 'r') as f:
      for line in f:
        key, value = line.split(':', 1)
        # The only non-float values in these files are dates, which we don't
        # care about.
        try:
          data[key] = np.array([float(x) for x in value.split()])
        except ValueError:
          pass
    return data

  def scale_intrinsics(self, mat, sx, sy):
    out = np.copy(mat)
    out[0, 0] *= sx
    out[0, 2] *= sx
    out[1, 1] *= sy
    out[1, 2] *= sy
    return out


class KittiOdom(object):
  """Reads KITTI odometry data files."""

  def __init__(self, dataset_dir, img_height=128, img_width=416, seq_length=3):
    self.dataset_dir = dataset_dir
    self.img_height = img_height
    self.img_width = img_width
    self.seq_length = seq_length
    self.train_seqs = [0, 1, 2, 3, 4, 5, 6, 7, 8]
    self.test_seqs = [9, 10]

    self.collect_test_frames()
    self.collect_train_frames()

  def collect_test_frames(self):
    self.test_frames = []
    for seq in self.test_seqs:
      seq_dir = os.path.join(self.dataset_dir, 'sequences', '%.2d' % seq)
      img_dir = os.path.join(seq_dir, 'image_2')
      num_frames = len(glob.glob(os.path.join(img_dir, '*.png')))
      for n in range(num_frames):
        self.test_frames.append('%.2d %.6d' % (seq, n))
    self.num_test = len(self.test_frames)

  def collect_train_frames(self):
    self.train_frames = []
    for seq in self.train_seqs:
      seq_dir = os.path.join(self.dataset_dir, 'sequences', '%.2d' % seq)
      img_dir = os.path.join(seq_dir, 'image_2')
      num_frames = len(glob.glob(img_dir + '/*.png'))
      for n in range(num_frames):
        self.train_frames.append('%.2d %.6d' % (seq, n))
    self.num_train = len(self.train_frames)

  def is_valid_sample(self, frames, target_frame_index):
    """Checks whether we can find a valid sequence around this frame."""
    num_frames = len(frames)
    target_frame_drive, _ = frames[target_frame_index].split(' ')
    start_index, end_index = get_seq_start_end(target_frame_index,
                                               self.seq_length)
    if start_index < 0 or end_index >= num_frames:
      return False
    start_drive, _ = frames[start_index].split(' ')
    end_drive, _ = frames[end_index].split(' ')
    if target_frame_drive == start_drive and target_frame_drive == end_drive:
      return True
    return False

  def load_image_sequence(self, frames, target_frame_index):
    """Returns a sequence with requested target frame."""
    start_index, end_index = get_seq_start_end(target_frame_index,
                                               self.seq_length)
    image_seq = []
    for index in range(start_index, end_index + 1):
      drive, frame_id = frames[index].split(' ')
      img = self.load_image(drive, frame_id)
      if index == target_frame_index:
        zoom_y = self.img_height / img.shape[0]
        zoom_x = self.img_width / img.shape[1]
      img = scipy.misc.imresize(img, (self.img_height, self.img_width))
      image_seq.append(img)
    return image_seq, zoom_x, zoom_y

  def load_example(self, frames, target_frame_index):
    """Returns a sequence with requested target frame."""
    image_seq, zoom_x, zoom_y = self.load_image_sequence(frames,
                                                         target_frame_index)
    target_frame_drive, target_frame_id = frames[target_frame_index].split(' ')
    intrinsics = self.load_intrinsics(target_frame_drive, target_frame_id)
    intrinsics = self.scale_intrinsics(intrinsics, zoom_x, zoom_y)
    example = {}
    example['intrinsics'] = intrinsics
    example['image_seq'] = image_seq
    example['folder_name'] = target_frame_drive
    example['file_name'] = target_frame_id
    return example

  def get_example_with_index(self, target_frame_index):
    if not self.is_valid_sample(self.train_frames, target_frame_index):
      return False
    example = self.load_example(self.train_frames, target_frame_index)
    return example

  def load_image(self, drive, frame_id):
    img_file = os.path.join(self.dataset_dir, 'sequences',
                            '%s/image_2/%s.png' % (drive, frame_id))
    img = scipy.misc.imread(img_file)
    return img

  def load_intrinsics(self, drive, unused_frame_id):
    calib_file = os.path.join(self.dataset_dir, 'sequences',
                              '%s/calib.txt' % drive)
    proj_c2p, _ = self.read_calib_file(calib_file)
    intrinsics = proj_c2p[:3, :3]
    return intrinsics

  def read_calib_file(self, filepath, cam_id=2):
    """Read in a calibration file and parse into a dictionary."""

    def parse_line(line, shape):
      data = line.split()
      data = np.array(data[1:]).reshape(shape).astype(np.float32)
      return data

    with open(filepath, 'r') as f:
      mat = f.readlines()
    proj_c2p = parse_line(mat[cam_id], shape=(3, 4))
    proj_v2c = parse_line(mat[-1], shape=(3, 4))
    filler = np.array([0, 0, 0, 1]).reshape((1, 4))
    proj_v2c = np.concatenate((proj_v2c, filler), axis=0)
    return proj_c2p, proj_v2c

  def scale_intrinsics(self, mat, sx, sy):
    out = np.copy(mat)
    out[0, 0] *= sx
    out[0, 2] *= sx
    out[1, 1] *= sy
    out[1, 2] *= sy
    return out


class Cityscapes(object):
  """Reads Cityscapes data files."""

  def __init__(self,
               dataset_dir,
               split='train',
               crop_bottom=CITYSCAPES_CROP_BOTTOM,  # Crop the car logo.
               crop_pct=CITYSCAPES_CROP_PCT,
               sample_every=CITYSCAPES_SAMPLE_EVERY,
               img_height=128,
               img_width=416,
               seq_length=3):
    self.dataset_dir = dataset_dir
    self.split = split
    self.crop_bottom = crop_bottom
    self.crop_pct = crop_pct
    self.sample_every = sample_every
    self.img_height = img_height
    self.img_width = img_width
    self.seq_length = seq_length
    self.frames = self.collect_frames(split)
    self.num_frames = len(self.frames)
    if split == 'train':
      self.num_train = self.num_frames
    else:
      self.num_test = self.num_frames
    logging.info('Total frames collected: %d', self.num_frames)

  def collect_frames(self, split):
    img_dir = os.path.join(self.dataset_dir, 'leftImg8bit_sequence', split)
    city_list = os.listdir(img_dir)
    frames = []
    for city in city_list:
      img_files = glob.glob(os.path.join(img_dir, city, '*.png'))
      for f in img_files:
        frame_id = os.path.basename(f).split('leftImg8bit')[0]
        frames.append(frame_id)
    return frames

  def get_example_with_index(self, target_index):
    target_frame_id = self.frames[target_index]
    if not self.is_valid_example(target_frame_id):
      return False
    example = self.load_example(self.frames[target_index])
    return example

  def load_intrinsics(self, frame_id, split):
    """Read intrinsics data for frame."""
    city, seq, _, _ = frame_id.split('_')
    camera_file = os.path.join(self.dataset_dir, 'camera', split, city,
                               city + '_' + seq + '_*_camera.json')
    camera_file = glob.glob(camera_file)[0]
    with open(camera_file, 'r') as f:
      camera = json.load(f)
    fx = camera['intrinsic']['fx']
    fy = camera['intrinsic']['fy']
    u0 = camera['intrinsic']['u0']
    v0 = camera['intrinsic']['v0']
    # Cropping the bottom of the image and then resizing it to the same
    # (height, width) amounts to stretching the image's height.
    if self.crop_bottom:
      fy *= 1.0 / self.crop_pct
    intrinsics = np.array([[fx, 0, u0],
                           [0, fy, v0],
                           [0, 0, 1]])
    return intrinsics

  def is_valid_example(self, target_frame_id):
    """Checks whether we can find a valid sequence around this frame."""
    city, snippet_id, target_local_frame_id, _ = target_frame_id.split('_')
    start_index, end_index = get_seq_start_end(
        int(target_local_frame_id), self.seq_length, self.sample_every)
    for index in range(start_index, end_index + 1, self.sample_every):
      local_frame_id = '%.6d' % index
      frame_id = '%s_%s_%s_' % (city, snippet_id, local_frame_id)
      image_filepath = os.path.join(self.dataset_dir, 'leftImg8bit_sequence',
                                    self.split, city,
                                    frame_id + 'leftImg8bit.png')
      if not os.path.exists(image_filepath):
        return False
    return True

  def load_image_sequence(self, target_frame_id):
    """Returns a sequence with requested target frame."""
    city, snippet_id, target_local_frame_id, _ = target_frame_id.split('_')
    start_index, end_index = get_seq_start_end(
        int(target_local_frame_id), self.seq_length, self.sample_every)
    image_seq = []
    for index in range(start_index, end_index + 1, self.sample_every):
      local_frame_id = '%.6d' % index
      frame_id = '%s_%s_%s_' % (city, snippet_id, local_frame_id)
      image_filepath = os.path.join(self.dataset_dir, 'leftImg8bit_sequence',
                                    self.split, city,
                                    frame_id + 'leftImg8bit.png')
      img = scipy.misc.imread(image_filepath)
      if self.crop_bottom:
        ymax = int(img.shape[0] * self.crop_pct)
        img = img[:ymax]
      raw_shape = img.shape
      if index == int(target_local_frame_id):
        zoom_y = self.img_height / raw_shape[0]
        zoom_x = self.img_width / raw_shape[1]
      img = scipy.misc.imresize(img, (self.img_height, self.img_width))
      image_seq.append(img)
    return image_seq, zoom_x, zoom_y

  def load_example(self, target_frame_id):
    """Returns a sequence with requested target frame."""
    image_seq, zoom_x, zoom_y = self.load_image_sequence(target_frame_id)
    intrinsics = self.load_intrinsics(target_frame_id, self.split)
    intrinsics = self.scale_intrinsics(intrinsics, zoom_x, zoom_y)
    example = {}
    example['intrinsics'] = intrinsics
    example['image_seq'] = image_seq
    example['folder_name'] = target_frame_id.split('_')[0]
    example['file_name'] = target_frame_id[:-1]
    return example

  def scale_intrinsics(self, mat, sx, sy):
    out = np.copy(mat)
    out[0, 0] *= sx
    out[0, 2] *= sx
    out[1, 1] *= sy
    out[1, 2] *= sy
    return out


def get_resource_path(relative_path):
  return relative_path


def get_seq_start_end(target_index, seq_length, sample_every=1):
  """Returns absolute seq start and end indices for a given target frame."""
  half_offset = int((seq_length - 1) / 2) * sample_every
  end_index = target_index + half_offset
  start_index = end_index - (seq_length - 1) * sample_every
  return start_index, end_index


def atoi(text):
  return int(text) if text.isdigit() else text


def natural_keys(text):
  return [atoi(c) for c in re.split(r'(\d+)', text)]