neumf_model.py 5.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines NeuMF model for NCF framework.

Some abbreviations used in the code base:
NeuMF: Neural Matrix Factorization
NCF: Neural Collaborative Filtering
GMF: Generalized Matrix Factorization
MLP: Multi-Layer Perceptron

GMF applies a linear kernel to model the latent feature interactions, and MLP
uses a nonlinear kernel to learn the interaction function from data. NeuMF model
is a fused model of GMF and MLP to better model the complex user-item
interactions, and unifies the strengths of linearity of MF and non-linearity of
MLP for modeling the user-item latent structures.

In NeuMF model, it allows GMF and MLP to learn separate embeddings, and combine
the two models by concatenating their last hidden layer.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

from official.recommendation import constants  # pylint: disable=g-bad-import-order


class NeuMF(tf.keras.models.Model):
  """Neural matrix factorization (NeuMF) model for recommendations."""

  def __init__(self, num_users, num_items, mf_dim, model_layers, batch_size,
46
               mf_regularization, mlp_reg_layers):
47
48
49
50
51
52
53
54
55
56
    """Initialize NeuMF model.

    Args:
      num_users: An integer, the number of users.
      num_items: An integer, the number of items.
      mf_dim: An integer, the embedding size of Matrix Factorization (MF) model.
      model_layers: A list of integers for Multi-Layer Perceptron (MLP) layers.
        Note that the first layer is the concatenation of user and item
        embeddings. So model_layers[0]//2 is the embedding size for MLP.
      batch_size: An integer for the batch size.
57
      mf_regularization: A floating number, the regularization factor for MF
58
        embeddings.
59
60
      mlp_reg_layers: A list of floating numbers, the regularization factors for
        each layer in MLP.
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    Raises:
      ValueError: if the first model layer is not even.
    """
    if model_layers[0] % 2 != 0:
      raise ValueError("The first layer size should be multiple of 2!")

    # Input variables
    user_input = tf.keras.layers.Input(
        shape=(1,), dtype=tf.int32, name=constants.USER)
    item_input = tf.keras.layers.Input(
        shape=(1,), dtype=tf.int32, name=constants.ITEM)

    # Initializer for embedding layer
    embedding_initializer = tf.keras.initializers.RandomNormal(stddev=0.01)
    # Embedding layers of GMF and MLP
    mf_embedding_user = tf.keras.layers.Embedding(
        num_users,
        mf_dim,
        embeddings_initializer=embedding_initializer,
        embeddings_regularizer=tf.keras.regularizers.l2(mf_regularization),
        input_length=1)
    mf_embedding_item = tf.keras.layers.Embedding(
        num_items,
        mf_dim,
        embeddings_initializer=embedding_initializer,
        embeddings_regularizer=tf.keras.regularizers.l2(mf_regularization),
        input_length=1)

    mlp_embedding_user = tf.keras.layers.Embedding(
        num_users,
        model_layers[0]//2,
        embeddings_initializer=embedding_initializer,
94
        embeddings_regularizer=tf.keras.regularizers.l2(mlp_reg_layers[0]),
95
96
97
98
99
        input_length=1)
    mlp_embedding_item = tf.keras.layers.Embedding(
        num_items,
        model_layers[0]//2,
        embeddings_initializer=embedding_initializer,
100
        embeddings_regularizer=tf.keras.regularizers.l2(mlp_reg_layers[0]),
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        input_length=1)

    # GMF part
    # Flatten the embedding vector as latent features in GMF
    mf_user_latent = tf.keras.layers.Flatten()(mf_embedding_user(user_input))
    mf_item_latent = tf.keras.layers.Flatten()(mf_embedding_item(item_input))
    # Element-wise multiply
    mf_vector = tf.keras.layers.multiply([mf_user_latent, mf_item_latent])

    # MLP part
    # Flatten the embedding vector as latent features in MLP
    mlp_user_latent = tf.keras.layers.Flatten()(mlp_embedding_user(user_input))
    mlp_item_latent = tf.keras.layers.Flatten()(mlp_embedding_item(item_input))
    # Concatenation of two latent features
    mlp_vector = tf.keras.layers.concatenate([mlp_user_latent, mlp_item_latent])

    num_layer = len(model_layers)  # Number of layers in the MLP
118
    for layer in xrange(1, num_layer):
119
      model_layer = tf.keras.layers.Dense(
120
121
          model_layers[layer],
          kernel_regularizer=tf.keras.regularizers.l2(mlp_reg_layers[layer]),
122
123
124
125
126
127
128
129
130
131
132
133
134
          activation="relu")
      mlp_vector = model_layer(mlp_vector)

    # Concatenate GMF and MLP parts
    predict_vector = tf.keras.layers.concatenate([mf_vector, mlp_vector])

    # Final prediction layer
    prediction = tf.keras.layers.Dense(
        1, activation="sigmoid", kernel_initializer="lecun_uniform",
        name=constants.RATING)(predict_vector)

    super(NeuMF, self).__init__(
        inputs=[user_input, item_input], outputs=prediction)