a3c_cartpole.py 12.2 KB
Newer Older
Raymond Yuan's avatar
Raymond Yuan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"   # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = ""

import threading
import gym
import multiprocessing
import numpy as np
from queue import Queue
import argparse
import matplotlib.pyplot as plt


import tensorflow as tf
from tensorflow.python import keras
from tensorflow.python.keras import layers

tf.enable_eager_execution()

parser = argparse.ArgumentParser(description='Run A3C algorithm on the game '
                                             'Cartpole.')
parser.add_argument('--algorithm', default='a3c', type=str,
                    help='Choose between \'a3c\' and \'random\'.')
Raymond Yuan's avatar
Raymond Yuan committed
24
25
parser.add_argument('--train', dest='train', action='store_true',
                    help='Train our model.')
Raymond Yuan's avatar
Raymond Yuan committed
26
27
28
29
parser.add_argument('--lr', default=0.0005,
                    help='Learning rate for the shared optimizer.')
parser.add_argument('--update-freq', default=20, type=int,
                    help='How often to update the global model.')
30
parser.add_argument('--max-eps', default=1000, type=int,
Raymond Yuan's avatar
Raymond Yuan committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
                    help='Global maximum number of episodes to run.')
parser.add_argument('--gamma', default=0.99,
                    help='Discount factor of rewards.')
parser.add_argument('--save-dir', default='/tmp/', type=str,
                    help='Directory in which you desire to save the model.')
args = parser.parse_args()

class ActorCriticModel(keras.Model):
  def __init__(self, state_size, action_size):
    super(ActorCriticModel, self).__init__()
    self.state_size = state_size
    self.action_size = action_size
    self.dense1 = layers.Dense(100, activation='relu')
    self.policy_logits = layers.Dense(action_size)
    self.dense2 = layers.Dense(100, activation='relu')
    self.values = layers.Dense(1)

  def call(self, inputs):
    # Forward pass
    x = self.dense1(inputs)
    logits = self.policy_logits(x)
    v1 = self.dense2(inputs)
    values = self.values(v1)
    return logits, values

def record(episode,
           episode_reward,
           worker_idx,
           global_ep_reward,
           result_queue,
           total_loss,
           num_steps):
  """Helper function to store score and print statistics.

  Arguments:
    episode: Current episode
    episode_reward: Reward accumulated over the current episode
    worker_idx: Which thread (worker)
    global_ep_reward: The moving average of the global reward
    result_queue: Queue storing the moving average of the scores
    total_loss: The total loss accumualted over the current episode
    num_steps: The number of steps the episode took to complete
  """
  if global_ep_reward == 0:
    global_ep_reward = episode_reward
  else:
    global_ep_reward = global_ep_reward * 0.99 + episode_reward * 0.01
  print(
      f"Episode: {episode} | "
      f"Moving Average Reward: {int(global_ep_reward)} | "
      f"Episode Reward: {int(episode_reward)} | "
      f"Loss: {int(total_loss / float(num_steps) * 1000) / 1000} | "
      f"Steps: {num_steps} | "
      f"Worker: {worker_idx}"
  )
  result_queue.put(global_ep_reward)
  return global_ep_reward


class RandomAgent:
  """Random Agent that will play the specified game

    Arguments:
      env_name: Name of the environment to be played
      max_eps: Maximum number of episodes to run agent for.
  """
  def __init__(self, env_name, max_eps):
    self.env = gym.make(env_name)
    self.max_episodes = max_eps
    self.global_moving_average_reward = 0
    self.res_queue = Queue()

  def run(self):
    reward_avg = 0
    for episode in range(self.max_episodes):
      done = False
      self.env.reset()
      reward_sum = 0.0
      steps = 0
      while not done:
        # Sample randomly from the action space and step
        _, reward, done, _ = self.env.step(self.env.action_space.sample())
        steps += 1
        reward_sum += reward
      # Record statistics
      self.global_moving_average_reward = record(episode,
                                                 reward_sum,
                                                 0,
                                                 self.global_moving_average_reward,
                                                 self.res_queue, 0, steps)

      reward_avg += reward_sum
    final_avg = reward_avg / float(self.max_episodes)
    print("Average score across {} episodes: {}".format(self.max_episodes, final_avg))
    return final_avg


class MasterAgent():
  def __init__(self):
    self.game_name = 'CartPole-v0'
    save_dir = args.save_dir
    self.save_dir = save_dir
    if not os.path.exists(save_dir):
      os.makedirs(save_dir)

    env = gym.make(self.game_name)
    self.state_size = env.observation_space.shape[0]
    self.action_size = env.action_space.n
    self.opt = tf.train.AdamOptimizer(args.lr, use_locking=True)
    print(self.state_size, self.action_size)

    self.global_model = ActorCriticModel(self.state_size, self.action_size)  # global network
Raymond Yuan's avatar
Raymond Yuan committed
143
    self.global_model(tf.convert_to_tensor(np.random.random((1, self.state_size)), dtype=tf.float32))
Raymond Yuan's avatar
Raymond Yuan committed
144
145
146
147
148
149
150
151
152

  def train(self):
    if args.algorithm == 'random':
      random_agent = RandomAgent(self.game_name, args.max_eps)
      random_agent.run()
      return

    res_queue = Queue()

Raymond Yuan's avatar
Raymond Yuan committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    workers = [Worker(self.state_size,
                      self.action_size,
                      self.global_model,
                      self.opt, res_queue,
                      i, save_dir=self.save_dir) for i in range(multiprocessing.cpu_count())]

    for i, worker in enumerate(workers):
      print("Starting worker {}".format(i))
      worker.start()

    moving_average_rewards = []  # record episode reward to plot
    while True:
      reward = res_queue.get()
      if reward is not None:
        moving_average_rewards.append(reward)
      else:
        break
    [w.join() for w in workers]

    plt.plot(moving_average_rewards)
    plt.ylabel('Moving average ep reward')
    plt.xlabel('Step')
    plt.savefig(os.path.join(self.save_dir,
                             '{} Moving Average.png'.format(self.game_name)))
    plt.show()
Raymond Yuan's avatar
Raymond Yuan committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

  def play(self):
    env = gym.make(self.game_name).unwrapped
    state = env.reset()
    model = self.global_model
    model_path = os.path.join(self.save_dir, 'model_{}.h5'.format(self.game_name))
    print('Loading model from: {}'.format(model_path))
    model.load_weights(model_path)
    done = False
    step_counter = 0
    reward_sum = 0

    try:
      while not done:
        env.render(mode='rgb_array')
Raymond Yuan's avatar
Raymond Yuan committed
193
        policy, value = model(tf.convert_to_tensor(state[None, :], dtype=tf.float32))
Raymond Yuan's avatar
Raymond Yuan committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        policy = tf.nn.softmax(policy)
        action = np.argmax(policy)
        state, reward, done, _ = env.step(action)
        reward_sum += reward
        print("{}. Reward: {}, action: {}".format(step_counter, reward_sum, action))
        step_counter += 1
    except KeyboardInterrupt:
      print("Received Keyboard Interrupt. Shutting down.")
    finally:
      env.close()


class Memory:
  def __init__(self):
    self.states = []
    self.actions = []
    self.rewards = []

  def store(self, state, action, reward):
    self.states.append(state)
    self.actions.append(action)
    self.rewards.append(reward)

  def clear(self):
    self.states = []
    self.actions = []
    self.rewards = []


class Worker(threading.Thread):
  # Set up global variables across different threads
  global_episode = 0
  # Moving average reward
  global_moving_average_reward = 0
  best_score = 0
  save_lock = threading.Lock()

  def __init__(self,
               state_size,
               action_size,
               global_model,
               opt,
               result_queue,
               idx,
               game_name='CartPole-v0',
               save_dir='/tmp'):
    super(Worker, self).__init__()
    self.state_size = state_size
    self.action_size = action_size
    self.result_queue = result_queue
    self.global_model = global_model
    self.opt = opt
    self.local_model = ActorCriticModel(self.state_size, self.action_size)
    self.worker_idx = idx
    self.game_name = game_name
    self.env = gym.make(self.game_name).unwrapped
    self.save_dir = save_dir
    self.ep_loss = 0.0

  def run(self):
    total_step = 1
    mem = Memory()
    while Worker.global_episode < args.max_eps:
      current_state = self.env.reset()
      mem.clear()
      ep_reward = 0.
      ep_steps = 0
      self.ep_loss = 0

      time_count = 0
      done = False
      while not done:
Raymond Yuan's avatar
Raymond Yuan committed
266
267
268
        logits, _ = self.local_model(
            tf.convert_to_tensor(current_state[None, :],
                                 dtype=tf.float32))
Raymond Yuan's avatar
Raymond Yuan committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
        probs = tf.nn.softmax(logits)

        action = np.random.choice(self.action_size, p=probs.numpy()[0])
        new_state, reward, done, _ = self.env.step(action)
        if done:
          reward = -1
        ep_reward += reward
        mem.store(current_state, action, reward)

        if time_count == args.update_freq or done:
          # Calculate gradient wrt to local model. We do so by tracking the
          # variables involved in computing the loss by using tf.GradientTape
          with tf.GradientTape() as tape:
            total_loss = self.compute_loss(done,
                                           new_state,
                                           mem,
                                           args.gamma)
          self.ep_loss += total_loss
          # Calculate local gradients
          grads = tape.gradient(total_loss, self.local_model.trainable_weights)
          # Push local gradients to global model
          self.opt.apply_gradients(zip(grads,
                                       self.global_model.trainable_weights))
          # Update local model with new weights
          self.local_model.set_weights(self.global_model.get_weights())

          mem.clear()
          time_count = 0

          if done:  # done and print information
            Worker.global_moving_average_reward = \
              record(Worker.global_episode, ep_reward, self.worker_idx,
                     Worker.global_moving_average_reward, self.result_queue,
                     self.ep_loss, ep_steps)
            # We must use a lock to save our model and to print to prevent data races.
            if ep_reward > Worker.best_score:
              with Worker.save_lock:
                print("Saving best model to {}, "
                      "episode score: {}".format(self.save_dir, ep_reward))
                self.global_model.save_weights(
                    os.path.join(self.save_dir,
                                 'model_{}.h5'.format(self.game_name))
                )
                Worker.best_score = ep_reward
            Worker.global_episode += 1
        ep_steps += 1

        time_count += 1
        current_state = new_state
        total_step += 1
    self.result_queue.put(None)

  def compute_loss(self,
                   done,
                   new_state,
                   memory,
                   gamma=0.99):
    if done:
      reward_sum = 0.  # terminal
    else:
Raymond Yuan's avatar
Raymond Yuan committed
329
330
331
      reward_sum = self.local_model(
          tf.convert_to_tensor(new_state[None, :],
                               dtype=tf.float32))[-1].numpy()[0]
Raymond Yuan's avatar
Raymond Yuan committed
332
333
334
335
336
337
338
339

    # Get discounted rewards
    discounted_rewards = []
    for reward in memory.rewards[::-1]:  # reverse buffer r
      reward_sum = reward + gamma * reward_sum
      discounted_rewards.append(reward_sum)
    discounted_rewards.reverse()

Raymond Yuan's avatar
Raymond Yuan committed
340
341
342
    logits, values = self.local_model(
        tf.convert_to_tensor(np.vstack(memory.states),
                             dtype=tf.float32))
Raymond Yuan's avatar
Raymond Yuan committed
343
    # Get our advantages
Raymond Yuan's avatar
Raymond Yuan committed
344
345
    advantage = tf.convert_to_tensor(np.array(discounted_rewards)[:, None],
                            dtype=tf.float32) - values
Raymond Yuan's avatar
Raymond Yuan committed
346
347
348
349
350
351
    # Value loss
    value_loss = advantage ** 2

    # Calculate our policy loss
    actions_one_hot = tf.one_hot(memory.actions, self.action_size, dtype=tf.float32)

352
353
354
355
    policy = tf.nn.softmax(logits)
    entropy = tf.reduce_sum(policy * tf.log(policy + 1e-10), axis=1)

    policy_loss = tf.nn.softmax_cross_entropy_with_logits_v2(labels=actions_one_hot,
Raymond Yuan's avatar
Raymond Yuan committed
356
                                                             logits=logits)
357
358
359
    policy_loss *= tf.stop_gradient(advantage)
    policy_loss += 0.01 * entropy
    total_loss = tf.reduce_mean((0.5 * value_loss + policy_loss))
Raymond Yuan's avatar
Raymond Yuan committed
360
361
362
363
364
365
366
367
368
369
370
    return total_loss


if __name__ == '__main__':
  print(args)
  master = MasterAgent()
  if args.train:
    master.train()
  else:
    master.play()