decoder.py 4.55 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#!/usr/bin/python
#
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Neural Network Image Compression Decoder.

Decompress an image from the numpy's npz format generated by the encoder.

Example usage:
python decoder.py --input_codes=output_codes.pkl --iteration=15 \
--output_directory=/tmp/compression_output/ --model=residual_gru.pb
"""
24
import io
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os

import numpy as np
import tensorflow as tf

tf.flags.DEFINE_string('input_codes', None, 'Location of binary code file.')
tf.flags.DEFINE_integer('iteration', -1, 'The max quality level of '
                        'the images to output. Use -1 to infer from loaded '
                        ' codes.')
tf.flags.DEFINE_string('output_directory', None, 'Directory to save decoded '
                       'images.')
tf.flags.DEFINE_string('model', None, 'Location of compression model.')

FLAGS = tf.flags.FLAGS


def get_input_tensor_names():
  name_list = ['GruBinarizer/SignBinarizer/Sign:0']
43
  for i in range(1, 16):
44
45
46
47
48
    name_list.append('GruBinarizer/SignBinarizer/Sign_{}:0'.format(i))
  return name_list


def get_output_tensor_names():
49
  return ['loop_{0:02d}/add:0'.format(i) for i in range(0, 16)]
50
51
52
53
54


def main(_):
  if (FLAGS.input_codes is None or FLAGS.output_directory is None or
      FLAGS.model is None):
55
56
57
    print('\nUsage: python decoder.py --input_codes=output_codes.pkl '
          '--iteration=15 --output_directory=/tmp/compression_output/ '
          '--model=residual_gru.pb\n\n')
58
59
60
    return

  if FLAGS.iteration < -1 or FLAGS.iteration > 15:
61
62
    print('\n--iteration must be between 0 and 15 inclusive, or -1 to infer '
          'from file.\n')
63
64
65
66
67
68
69
    return
  iteration = FLAGS.iteration

  if not tf.gfile.Exists(FLAGS.output_directory):
    tf.gfile.MkDir(FLAGS.output_directory)

  if not tf.gfile.Exists(FLAGS.input_codes):
70
    print('\nInput codes not found.\n')
71
72
    return

73
74
75
76
  contents = ''
  with tf.gfile.FastGFile(FLAGS.input_codes, 'r') as code_file:
    contents = code_file.read()
    loaded_codes = np.load(io.BytesIO(contents))
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    assert ['codes', 'shape'] not in loaded_codes.files
    loaded_shape = loaded_codes['shape']
    loaded_array = loaded_codes['codes']

    # Unpack and recover code shapes.
    unpacked_codes = np.reshape(np.unpackbits(loaded_array)
                                [:np.prod(loaded_shape)],
                                loaded_shape)

    numpy_int_codes = np.split(unpacked_codes, len(unpacked_codes))
    if iteration == -1:
      iteration = len(unpacked_codes) - 1
    # Convert back to float and recover scale.
    numpy_codes = [np.squeeze(x.astype(np.float32), 0) * 2 - 1 for x in
                   numpy_int_codes]

  with tf.Graph().as_default() as graph:
    # Load the inference model for decoding.
    with tf.gfile.FastGFile(FLAGS.model, 'rb') as model_file:
      graph_def = tf.GraphDef()
      graph_def.ParseFromString(model_file.read())
    _ = tf.import_graph_def(graph_def, name='')

    # For encoding the tensors into PNGs.
    input_image = tf.placeholder(tf.uint8)
    encoded_image = tf.image.encode_png(input_image)

    input_tensors = [graph.get_tensor_by_name(name) for name in
                     get_input_tensor_names()][0:iteration+1]
    outputs = [graph.get_tensor_by_name(name) for name in
               get_output_tensor_names()][0:iteration+1]

  feed_dict = {key: value for (key, value) in zip(input_tensors,
                                                  numpy_codes)}

  with tf.Session(graph=graph) as sess:
    results = sess.run(outputs, feed_dict=feed_dict)

    for index, result in enumerate(results):
      img = np.uint8(np.clip(result + 0.5, 0, 255))
      img = img.squeeze()
      png_img = sess.run(encoded_image, feed_dict={input_image: img})

      with tf.gfile.FastGFile(os.path.join(FLAGS.output_directory,
                                           'image_{0:02d}.png'.format(index)),
                              'w') as output_image:
        output_image.write(png_img)


if __name__ == '__main__':
  tf.app.run()