"docs/zh_CN/examples.rst" did not exist on "abc221589c65d75b494407c60a81ca87c3020463"
nhnet_benchmark.py 4.78 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes benchmark testing for bert pretraining."""
# pylint: disable=line-too-long
from __future__ import print_function

import time
from typing import Optional

from absl import flags
import tensorflow as tf

from official.benchmark import benchmark_wrappers
from official.benchmark import owner_utils
from official.benchmark import perfzero_benchmark
from official.nlp.nhnet import trainer
from official.utils.flags import core as flags_core

Hongkun Yu's avatar
Hongkun Yu committed
32
33
MIN_LOSS = 0.40
MAX_LOSS = 0.55
Hongkun Yu's avatar
Hongkun Yu committed
34
NHNET_DATA = 'gs://tf-perfzero-data/nhnet/v1/processed/train.tfrecord*'
Hongkun Yu's avatar
Hongkun Yu committed
35
36
37
38
39
40
41

FLAGS = flags.FLAGS


class NHNetBenchmark(perfzero_benchmark.PerfZeroBenchmark):
  """Base benchmark class for NHNet."""

Hongkun Yu's avatar
Hongkun Yu committed
42
  def __init__(self, output_dir=None, default_flags=None, tpu=None, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
43
44
45
46
47
48
    self.default_flags = default_flags or {}
    flag_methods = trainer.define_flags()
    super(NHNetBenchmark, self).__init__(
        output_dir=output_dir,
        default_flags=default_flags,
        flag_methods=flag_methods,
Hongkun Yu's avatar
Hongkun Yu committed
49
50
        tpu=tpu,
        **kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

  def _report_benchmark(self,
                        stats,
                        wall_time_sec,
                        max_value=None,
                        min_value=None):
    """Report benchmark results by writing to local protobuf file.

    Args:
      stats: dict returned from keras models with known entries.
      wall_time_sec: the during of the benchmark execution in seconds
      max_value: highest passing level.
      min_value: lowest passing level.
    """

    metrics = []
    metrics.append({
        'name': 'training_loss',
        'value': stats['training_loss'],
        'min_value': min_value,
        'max_value': max_value
    })
    # These metrics are placeholders to avoid PerfZero failure.
    metrics.append({
        'name': 'exp_per_second',
        'value': 0.0,
    })
    metrics.append({
        'name': 'startup_time',
        'value': 9999.,
    })
    flags_str = flags_core.get_nondefault_flags_as_str()
    self.report_benchmark(
        iters=-1,
        wall_time=wall_time_sec,
        metrics=metrics,
        extras={'flags': flags_str})


class NHNetAccuracyBenchmark(NHNetBenchmark):
  """Benchmark accuracy tests for NHNet."""

  def __init__(self,
               output_dir: Optional[str] = None,
               tpu: Optional[str] = None,
               **kwargs):
    default_flags = dict(
        mode='train',
        train_file_pattern=NHNET_DATA,
        train_batch_size=1024,
        model_type='nhnet',
        len_title=15,
        len_passage=200,
        num_encoder_layers=12,
        num_decoder_layers=12,
        num_nhnet_articles=5,
        steps_per_loop=1000,
        params_override='init_from_bert2bert=false')
    super(NHNetAccuracyBenchmark, self).__init__(
        output_dir=output_dir, default_flags=default_flags, tpu=tpu, **kwargs)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self, max_value=MAX_LOSS, min_value=MIN_LOSS):
    """Runs and reports the benchmark given the provided configuration."""
    start_time_sec = time.time()
    stats = trainer.run()
    wall_time_sec = time.time() - start_time_sec
    self._report_benchmark(
        stats, wall_time_sec, max_value=max_value, min_value=min_value)

  @owner_utils.Owner('tf-model-garden')
  def benchmark_accuracy_4x4_tpu_f32_50k_steps(self):
    """Test bert pretraining with 4x4 TPU for 50k steps."""
    # This is used for accuracy test.
    self._setup()
    FLAGS.train_steps = 50000
    FLAGS.checkpoint_interval = FLAGS.train_steps
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_accuracy_4x4_tpu_bf32_50k_steps')
    self._run_and_report_benchmark()

  @owner_utils.Owner('tf-model-garden')
  def benchmark_accuracy_4x4_tpu_f32_1k_steps(self):
    """Test bert pretraining with 4x4 TPU for 1k steps."""
    self._setup()
    FLAGS.train_steps = 1000
    FLAGS.checkpoint_interval = FLAGS.train_steps
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_accuracy_4x4_tpu_bf32_1k_steps')
    self._run_and_report_benchmark()


if __name__ == '__main__':
  tf.test.main()