dcgan_test.py 4.13 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for dcgan."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
from six.moves import xrange
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import tensorflow as tf
from nets import dcgan


class DCGANTest(tf.test.TestCase):

  def test_generator_run(self):
    tf.set_random_seed(1234)
    noise = tf.random_normal([100, 64])
    image, _ = dcgan.generator(noise)
    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      image.eval()

  def test_generator_graph(self):
    tf.set_random_seed(1234)
    # Check graph construction for a number of image size/depths and batch
    # sizes.
    for i, batch_size in zip(xrange(3, 7), xrange(3, 8)):
      tf.reset_default_graph()
      final_size = 2 ** i
      noise = tf.random_normal([batch_size, 64])
      image, end_points = dcgan.generator(
          noise,
          depth=32,
          final_size=final_size)

      self.assertAllEqual([batch_size, final_size, final_size, 3],
                          image.shape.as_list())

      expected_names = ['deconv%i' % j for j in xrange(1, i)] + ['logits']
      self.assertSetEqual(set(expected_names), set(end_points.keys()))

      # Check layer depths.
      for j in range(1, i):
        layer = end_points['deconv%i' % j]
        self.assertEqual(32 * 2**(i-j-1), layer.get_shape().as_list()[-1])

  def test_generator_invalid_input(self):
    wrong_dim_input = tf.zeros([5, 32, 32])
    with self.assertRaises(ValueError):
      dcgan.generator(wrong_dim_input)

    correct_input = tf.zeros([3, 2])
    with self.assertRaisesRegexp(ValueError, 'must be a power of 2'):
      dcgan.generator(correct_input, final_size=30)

    with self.assertRaisesRegexp(ValueError, 'must be greater than 8'):
      dcgan.generator(correct_input, final_size=4)

  def test_discriminator_run(self):
    image = tf.random_uniform([5, 32, 32, 3], -1, 1)
    output, _ = dcgan.discriminator(image)
    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output.eval()

  def test_discriminator_graph(self):
    # Check graph construction for a number of image size/depths and batch
    # sizes.
    for i, batch_size in zip(xrange(1, 6), xrange(3, 8)):
      tf.reset_default_graph()
      img_w = 2 ** i
      image = tf.random_uniform([batch_size, img_w, img_w, 3], -1, 1)
      output, end_points = dcgan.discriminator(
          image,
          depth=32)

      self.assertAllEqual([batch_size, 1], output.get_shape().as_list())

      expected_names = ['conv%i' % j for j in xrange(1, i+1)] + ['logits']
      self.assertSetEqual(set(expected_names), set(end_points.keys()))

      # Check layer depths.
      for j in range(1, i+1):
        layer = end_points['conv%i' % j]
        self.assertEqual(32 * 2**(j-1), layer.get_shape().as_list()[-1])

  def test_discriminator_invalid_input(self):
    wrong_dim_img = tf.zeros([5, 32, 32])
    with self.assertRaises(ValueError):
      dcgan.discriminator(wrong_dim_img)

    spatially_undefined_shape = tf.placeholder(tf.float32, [5, 32, None, 3])
    with self.assertRaises(ValueError):
      dcgan.discriminator(spatially_undefined_shape)

    not_square = tf.zeros([5, 32, 16, 3])
    with self.assertRaisesRegexp(ValueError, 'not have equal width and height'):
      dcgan.discriminator(not_square)

    not_power_2 = tf.zeros([5, 30, 30, 3])
    with self.assertRaisesRegexp(ValueError, 'not a power of 2'):
      dcgan.discriminator(not_power_2)


if __name__ == '__main__':
  tf.test.main()