celeba_formatting.py 3.07 KB
Newer Older
Laurent Dinh's avatar
Laurent Dinh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

r"""CelebA dataset formating.

Download img_align_celeba.zip from
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html under the
link "Align&Cropped Images" in the "Img" directory and list_eval_partition.txt
under the link "Train/Val/Test Partitions" in the "Eval" directory. Then do:
unzip img_align_celeba.zip

Use the script as follow:
python celeba_formatting.py \
    --partition_fn [PARTITION_FILE_PATH] \
    --file_out [OUTPUT_FILE_PATH_PREFIX] \
    --fn_root [CELEBA_FOLDER] \
    --set [SUBSET_INDEX]

"""

33
34
from __future__ import print_function

Laurent Dinh's avatar
Laurent Dinh committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import os.path

import scipy.io
import scipy.io.wavfile
import scipy.ndimage
import tensorflow as tf


tf.flags.DEFINE_string("file_out", "",
                       "Filename of the output .tfrecords file.")
tf.flags.DEFINE_string("fn_root", "", "Name of root file path.")
tf.flags.DEFINE_string("partition_fn", "", "Partition file path.")
tf.flags.DEFINE_string("set", "", "Name of subset.")

FLAGS = tf.flags.FLAGS


def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))


def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))


def main():
    """Main converter function."""
    # Celeb A
    with open(FLAGS.partition_fn, "r") as infile:
        img_fn_list = infile.readlines()
    img_fn_list = [elem.strip().split() for elem in img_fn_list]
    img_fn_list = [elem[0] for elem in img_fn_list if elem[1] == FLAGS.set]
    fn_root = FLAGS.fn_root
    num_examples = len(img_fn_list)

    file_out = "%s.tfrecords" % FLAGS.file_out
    writer = tf.python_io.TFRecordWriter(file_out)
    for example_idx, img_fn in enumerate(img_fn_list):
        if example_idx % 1000 == 0:
75
            print(example_idx, "/", num_examples)
Laurent Dinh's avatar
Laurent Dinh committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        image_raw = scipy.ndimage.imread(os.path.join(fn_root, img_fn))
        rows = image_raw.shape[0]
        cols = image_raw.shape[1]
        depth = image_raw.shape[2]
        image_raw = image_raw.tostring()
        example = tf.train.Example(
            features=tf.train.Features(
                feature={
                    "height": _int64_feature(rows),
                    "width": _int64_feature(cols),
                    "depth": _int64_feature(depth),
                    "image_raw": _bytes_feature(image_raw)
                }
            )
        )
        writer.write(example.SerializeToString())
    writer.close()


if __name__ == "__main__":
    main()