exporter.py 16.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Functions to export object detection inference graph."""
import logging
import os
Vivek Rathod's avatar
Vivek Rathod committed
19
import tempfile
20
import tensorflow as tf
21
from tensorflow.core.protobuf import rewriter_config_pb2
22
23
24
25
from tensorflow.python import pywrap_tensorflow
from tensorflow.python.client import session
from tensorflow.python.framework import graph_util
from tensorflow.python.platform import gfile
26
from tensorflow.python.saved_model import signature_constants
27
28
29
30
31
32
33
34
from tensorflow.python.training import saver as saver_lib
from object_detection.builders import model_builder
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder

slim = tf.contrib.slim


35
36
# TODO: Replace with freeze_graph.freeze_graph_with_def_protos when
# newer version of Tensorflow becomes more common.
37
38
39
40
41
42
43
44
45
def freeze_graph_with_def_protos(
    input_graph_def,
    input_saver_def,
    input_checkpoint,
    output_node_names,
    restore_op_name,
    filename_tensor_name,
    clear_devices,
    initializer_nodes,
Vivek Rathod's avatar
Vivek Rathod committed
46
    optimize_graph=True,
47
48
49
50
51
52
    variable_names_blacklist=''):
  """Converts all variables in a graph and checkpoint into constants."""
  del restore_op_name, filename_tensor_name  # Unused by updated loading code.

  # 'input_checkpoint' may be a prefix if we're using Saver V2 format
  if not saver_lib.checkpoint_exists(input_checkpoint):
53
54
    raise ValueError(
        'Input checkpoint "' + input_checkpoint + '" does not exist!')
55
56

  if not output_node_names:
57
58
    raise ValueError(
        'You must supply the name of a node to --output_node_names.')
59
60
61
62
63
64
65

  # Remove all the explicit device specifications for this node. This helps to
  # make the graph more portable.
  if clear_devices:
    for node in input_graph_def.node:
      node.device = ''

66
67
68
69
70
71
  with tf.Graph().as_default():
    tf.import_graph_def(input_graph_def, name='')

    if optimize_graph:
      logging.info('Graph Rewriter optimizations enabled')
      rewrite_options = rewriter_config_pb2.RewriterConfig(
72
          layout_optimizer=rewriter_config_pb2.RewriterConfig.ON)
73
74
75
76
77
      rewrite_options.optimizers.append('pruning')
      rewrite_options.optimizers.append('constfold')
      rewrite_options.optimizers.append('layout')
      graph_options = tf.GraphOptions(
          rewrite_options=rewrite_options, infer_shapes=True)
78
    else:
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
      logging.info('Graph Rewriter optimizations disabled')
      graph_options = tf.GraphOptions()
    config = tf.ConfigProto(graph_options=graph_options)
    with session.Session(config=config) as sess:
      if input_saver_def:
        saver = saver_lib.Saver(saver_def=input_saver_def)
        saver.restore(sess, input_checkpoint)
      else:
        var_list = {}
        reader = pywrap_tensorflow.NewCheckpointReader(input_checkpoint)
        var_to_shape_map = reader.get_variable_to_shape_map()
        for key in var_to_shape_map:
          try:
            tensor = sess.graph.get_tensor_by_name(key + ':0')
          except KeyError:
            # This tensor doesn't exist in the graph (for example it's
            # 'global_step' or a similar housekeeping element) so skip it.
            continue
          var_list[key] = tensor
        saver = saver_lib.Saver(var_list=var_list)
        saver.restore(sess, input_checkpoint)
        if initializer_nodes:
          sess.run(initializer_nodes)

      variable_names_blacklist = (variable_names_blacklist.split(',') if
                                  variable_names_blacklist else None)
      output_graph_def = graph_util.convert_variables_to_constants(
          sess,
          input_graph_def,
          output_node_names.split(','),
          variable_names_blacklist=variable_names_blacklist)
110

111
112
113
  return output_graph_def


Vivek Rathod's avatar
Vivek Rathod committed
114
115
116
117
def replace_variable_values_with_moving_averages(graph,
                                                 current_checkpoint_file,
                                                 new_checkpoint_file):
  """Replaces variable values in the checkpoint with their moving averages.
118

Vivek Rathod's avatar
Vivek Rathod committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
  If the current checkpoint has shadow variables maintaining moving averages of
  the variables defined in the graph, this function generates a new checkpoint
  where the variables contain the values of their moving averages.

  Args:
    graph: a tf.Graph object.
    current_checkpoint_file: a checkpoint containing both original variables and
      their moving averages.
    new_checkpoint_file: file path to write a new checkpoint.
  """
  with graph.as_default():
    variable_averages = tf.train.ExponentialMovingAverage(0.0)
    ema_variables_to_restore = variable_averages.variables_to_restore()
    with tf.Session() as sess:
      read_saver = tf.train.Saver(ema_variables_to_restore)
      read_saver.restore(sess, current_checkpoint_file)
      write_saver = tf.train.Saver()
      write_saver.save(sess, new_checkpoint_file)


def _image_tensor_input_placeholder(input_shape=None):
  """Returns input placeholder and a 4-D uint8 image tensor."""
  if input_shape is None:
    input_shape = (None, None, None, 3)
  input_tensor = tf.placeholder(
      dtype=tf.uint8, shape=input_shape, name='image_tensor')
Derek Chow's avatar
Derek Chow committed
145
  return input_tensor, input_tensor
146

147

148
def _tf_example_input_placeholder():
Derek Chow's avatar
Derek Chow committed
149
150
151
  """Returns input that accepts a batch of strings with tf examples.

  Returns:
Vivek Rathod's avatar
Vivek Rathod committed
152
    a tuple of input placeholder and the output decoded images.
Derek Chow's avatar
Derek Chow committed
153
  """
154
155
156
157
158
159
160
  batch_tf_example_placeholder = tf.placeholder(
      tf.string, shape=[None], name='tf_example')
  def decode(tf_example_string_tensor):
    tensor_dict = tf_example_decoder.TfExampleDecoder().decode(
        tf_example_string_tensor)
    image_tensor = tensor_dict[fields.InputDataFields.image]
    return image_tensor
Derek Chow's avatar
Derek Chow committed
161
162
163
164
165
166
  return (batch_tf_example_placeholder,
          tf.map_fn(decode,
                    elems=batch_tf_example_placeholder,
                    dtype=tf.uint8,
                    parallel_iterations=32,
                    back_prop=False))
167
168


169
def _encoded_image_string_tensor_input_placeholder():
Derek Chow's avatar
Derek Chow committed
170
171
172
  """Returns input that accepts a batch of PNG or JPEG strings.

  Returns:
Vivek Rathod's avatar
Vivek Rathod committed
173
    a tuple of input placeholder and the output decoded images.
Derek Chow's avatar
Derek Chow committed
174
  """
175
176
177
178
179
180
181
182
183
  batch_image_str_placeholder = tf.placeholder(
      dtype=tf.string,
      shape=[None],
      name='encoded_image_string_tensor')
  def decode(encoded_image_string_tensor):
    image_tensor = tf.image.decode_image(encoded_image_string_tensor,
                                         channels=3)
    image_tensor.set_shape((None, None, 3))
    return image_tensor
Derek Chow's avatar
Derek Chow committed
184
185
186
187
188
189
190
  return (batch_image_str_placeholder,
          tf.map_fn(
              decode,
              elems=batch_image_str_placeholder,
              dtype=tf.uint8,
              parallel_iterations=32,
              back_prop=False))
191
192


193
input_placeholder_fn_map = {
194
195
196
    'image_tensor': _image_tensor_input_placeholder,
    'encoded_image_string_tensor':
    _encoded_image_string_tensor_input_placeholder,
197
198
199
200
    'tf_example': _tf_example_input_placeholder,
}


201
202
def _add_output_tensor_nodes(postprocessed_tensors,
                             output_collection_name='inference_op'):
203
204
205
206
207
208
209
210
211
212
  """Adds output nodes for detection boxes and scores.

  Adds the following nodes for output tensors -
    * num_detections: float32 tensor of shape [batch_size].
    * detection_boxes: float32 tensor of shape [batch_size, num_boxes, 4]
      containing detected boxes.
    * detection_scores: float32 tensor of shape [batch_size, num_boxes]
      containing scores for the detected boxes.
    * detection_classes: float32 tensor of shape [batch_size, num_boxes]
      containing class predictions for the detected boxes.
213
214
215
    * detection_masks: (Optional) float32 tensor of shape
      [batch_size, num_boxes, mask_height, mask_width] containing masks for each
      detection box.
216
217
218
219
220
221

  Args:
    postprocessed_tensors: a dictionary containing the following fields
      'detection_boxes': [batch, max_detections, 4]
      'detection_scores': [batch, max_detections]
      'detection_classes': [batch, max_detections]
222
223
      'detection_masks': [batch, max_detections, mask_height, mask_width]
        (optional).
224
      'num_detections': [batch]
225
    output_collection_name: Name of collection to add output tensors to.
226
227
228

  Returns:
    A tensor dict containing the added output tensor nodes.
229
230
231
232
233
  """
  label_id_offset = 1
  boxes = postprocessed_tensors.get('detection_boxes')
  scores = postprocessed_tensors.get('detection_scores')
  classes = postprocessed_tensors.get('detection_classes') + label_id_offset
234
  masks = postprocessed_tensors.get('detection_masks')
235
  num_detections = postprocessed_tensors.get('num_detections')
236
237
238
239
240
  outputs = {}
  outputs['detection_boxes'] = tf.identity(boxes, name='detection_boxes')
  outputs['detection_scores'] = tf.identity(scores, name='detection_scores')
  outputs['detection_classes'] = tf.identity(classes, name='detection_classes')
  outputs['num_detections'] = tf.identity(num_detections, name='num_detections')
241
  if masks is not None:
242
    outputs['detection_masks'] = tf.identity(masks, name='detection_masks')
243
244
245
246
  for output_key in outputs:
    tf.add_to_collection(output_collection_name, outputs[output_key])
  if masks is not None:
    tf.add_to_collection(output_collection_name, outputs['detection_masks'])
247
  return outputs
248
249


250
251
def _write_frozen_graph(frozen_graph_path, frozen_graph_def):
  """Writes frozen graph to disk.
252
253

  Args:
254
255
    frozen_graph_path: Path to write inference graph.
    frozen_graph_def: tf.GraphDef holding frozen graph.
256
  """
257
258
259
260
261
262
263
264
265
  with gfile.GFile(frozen_graph_path, 'wb') as f:
    f.write(frozen_graph_def.SerializeToString())
  logging.info('%d ops in the final graph.', len(frozen_graph_def.node))


def _write_saved_model(saved_model_path,
                       frozen_graph_def,
                       inputs,
                       outputs):
266
267
268
269
270
271
272
273
274
  """Writes SavedModel to disk.

  If checkpoint_path is not None bakes the weights into the graph thereby
  eliminating the need of checkpoint files during inference. If the model
  was trained with moving averages, setting use_moving_averages to true
  restores the moving averages, otherwise the original set of variables
  is restored.

  Args:
275
276
    saved_model_path: Path to write SavedModel.
    frozen_graph_def: tf.GraphDef holding frozen graph.
277
278
279
280
281
282
    inputs: The input image tensor to use for detection.
    outputs: A tensor dictionary containing the outputs of a DetectionModel.
  """
  with tf.Graph().as_default():
    with session.Session() as sess:

283
      tf.import_graph_def(frozen_graph_def, name='')
284

285
      builder = tf.saved_model.builder.SavedModelBuilder(saved_model_path)
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

      tensor_info_inputs = {
          'inputs': tf.saved_model.utils.build_tensor_info(inputs)}
      tensor_info_outputs = {}
      for k, v in outputs.items():
        tensor_info_outputs[k] = tf.saved_model.utils.build_tensor_info(v)

      detection_signature = (
          tf.saved_model.signature_def_utils.build_signature_def(
              inputs=tensor_info_inputs,
              outputs=tensor_info_outputs,
              method_name=signature_constants.PREDICT_METHOD_NAME))

      builder.add_meta_graph_and_variables(
          sess, [tf.saved_model.tag_constants.SERVING],
          signature_def_map={
Derek Chow's avatar
Derek Chow committed
302
              signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
303
304
305
306
307
308
                  detection_signature,
          },
      )
      builder.save()


309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
def _write_graph_and_checkpoint(inference_graph_def,
                                model_path,
                                input_saver_def,
                                trained_checkpoint_prefix):
  for node in inference_graph_def.node:
    node.device = ''
  with tf.Graph().as_default():
    tf.import_graph_def(inference_graph_def, name='')
    with session.Session() as sess:
      saver = saver_lib.Saver(saver_def=input_saver_def,
                              save_relative_paths=True)
      saver.restore(sess, trained_checkpoint_prefix)
      saver.save(sess, model_path)


324
325
326
def _export_inference_graph(input_type,
                            detection_model,
                            use_moving_averages,
327
328
                            trained_checkpoint_prefix,
                            output_directory,
Vivek Rathod's avatar
Vivek Rathod committed
329
330
331
                            additional_output_tensor_names=None,
                            input_shape=None,
                            optimize_graph=True,
332
                            output_collection_name='inference_op'):
333
  """Export helper."""
334
335
336
337
338
339
  tf.gfile.MakeDirs(output_directory)
  frozen_graph_path = os.path.join(output_directory,
                                   'frozen_inference_graph.pb')
  saved_model_path = os.path.join(output_directory, 'saved_model')
  model_path = os.path.join(output_directory, 'model.ckpt')

340
341
  if input_type not in input_placeholder_fn_map:
    raise ValueError('Unknown input type: {}'.format(input_type))
Vivek Rathod's avatar
Vivek Rathod committed
342
343
344
345
346
347
348
349
  placeholder_args = {}
  if input_shape is not None:
    if input_type != 'image_tensor':
      raise ValueError('Can only specify input shape for `image_tensor` '
                       'inputs.')
    placeholder_args['input_shape'] = input_shape
  placeholder_tensor, input_tensors = input_placeholder_fn_map[input_type](
      **placeholder_args)
Derek Chow's avatar
Derek Chow committed
350
  inputs = tf.to_float(input_tensors)
351
352
353
  preprocessed_inputs = detection_model.preprocess(inputs)
  output_tensors = detection_model.predict(preprocessed_inputs)
  postprocessed_tensors = detection_model.postprocess(output_tensors)
354
355
  outputs = _add_output_tensor_nodes(postprocessed_tensors,
                                     output_collection_name)
Vivek Rathod's avatar
Vivek Rathod committed
356
357
  # Add global step to the graph.
  slim.get_or_create_global_step()
358
359

  if use_moving_averages:
Vivek Rathod's avatar
Vivek Rathod committed
360
361
362
363
364
    temp_checkpoint_file = tempfile.NamedTemporaryFile()
    replace_variable_values_with_moving_averages(
        tf.get_default_graph(), trained_checkpoint_prefix,
        temp_checkpoint_file.name)
    checkpoint_to_use = temp_checkpoint_file.name
365
  else:
Vivek Rathod's avatar
Vivek Rathod committed
366
367
368
    checkpoint_to_use = trained_checkpoint_prefix

  saver = tf.train.Saver()
369
370
371
372
373
374
  input_saver_def = saver.as_saver_def()

  _write_graph_and_checkpoint(
      inference_graph_def=tf.get_default_graph().as_graph_def(),
      model_path=model_path,
      input_saver_def=input_saver_def,
Vivek Rathod's avatar
Vivek Rathod committed
375
376
377
378
379
380
      trained_checkpoint_prefix=checkpoint_to_use)

  if additional_output_tensor_names is not None:
    output_node_names = ','.join(outputs.keys()+additional_output_tensor_names)
  else:
    output_node_names = ','.join(outputs.keys())
381
382
383
384

  frozen_graph_def = freeze_graph_with_def_protos(
      input_graph_def=tf.get_default_graph().as_graph_def(),
      input_saver_def=input_saver_def,
Vivek Rathod's avatar
Vivek Rathod committed
385
386
      input_checkpoint=checkpoint_to_use,
      output_node_names=output_node_names,
387
388
389
390
391
392
      restore_op_name='save/restore_all',
      filename_tensor_name='save/Const:0',
      clear_devices=True,
      optimize_graph=optimize_graph,
      initializer_nodes='')
  _write_frozen_graph(frozen_graph_path, frozen_graph_def)
Vivek Rathod's avatar
Vivek Rathod committed
393
394
  _write_saved_model(saved_model_path, frozen_graph_def,
                     placeholder_tensor, outputs)
395
396


397
398
399
400
def export_inference_graph(input_type,
                           pipeline_config,
                           trained_checkpoint_prefix,
                           output_directory,
Vivek Rathod's avatar
Vivek Rathod committed
401
402
403
404
                           input_shape=None,
                           optimize_graph=True,
                           output_collection_name='inference_op',
                           additional_output_tensor_names=None):
405
406
407
408
409
410
  """Exports inference graph for the model specified in the pipeline config.

  Args:
    input_type: Type of input for the graph. Can be one of [`image_tensor`,
      `tf_example`].
    pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto.
411
412
    trained_checkpoint_prefix: Path to the trained checkpoint file.
    output_directory: Path to write outputs.
Vivek Rathod's avatar
Vivek Rathod committed
413
414
    input_shape: Sets a fixed shape for an `image_tensor` input. If not
      specified, will default to [None, None, None, 3].
415
416
417
    optimize_graph: Whether to optimize graph using Grappler.
    output_collection_name: Name of collection to add output tensors to.
      If None, does not add output tensors to a collection.
Vivek Rathod's avatar
Vivek Rathod committed
418
419
    additional_output_tensor_names: list of additional output
    tensors to include in the frozen graph.
420
421
422
423
424
  """
  detection_model = model_builder.build(pipeline_config.model,
                                        is_training=False)
  _export_inference_graph(input_type, detection_model,
                          pipeline_config.eval_config.use_moving_averages,
Vivek Rathod's avatar
Vivek Rathod committed
425
426
427
                          trained_checkpoint_prefix,
                          output_directory, additional_output_tensor_names,
                          input_shape, optimize_graph, output_collection_name)