neural_gpu.py 31.8 KB
Newer Older
Martin Wicke's avatar
Martin Wicke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lukasz Kaiser's avatar
Lukasz Kaiser committed
15
16
17
18
"""The Neural GPU Model."""

import time

Lukasz Kaiser's avatar
Lukasz Kaiser committed
19
import numpy as np
20
from six.moves import xrange
Lukasz Kaiser's avatar
Lukasz Kaiser committed
21
22
import tensorflow as tf

Lukasz Kaiser's avatar
Lukasz Kaiser committed
23
24
from tensorflow.python.framework import function
import data_utils as data
Lukasz Kaiser's avatar
Lukasz Kaiser committed
25

Lukasz Kaiser's avatar
Lukasz Kaiser committed
26
27
do_jit = False  # Gives more speed but experimental for now.
jit_scope = tf.contrib.compiler.jit.experimental_jit_scope
Lukasz Kaiser's avatar
Lukasz Kaiser committed
28

Lukasz Kaiser's avatar
Lukasz Kaiser committed
29
30

def conv_linear(args, kw, kh, nin, nout, rate, do_bias, bias_start, prefix):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
31
32
33
34
  """Convolutional linear map."""
  if not isinstance(args, (list, tuple)):
    args = [args]
  with tf.variable_scope(prefix):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
35
36
    with tf.device("/cpu:0"):
      k = tf.get_variable("CvK", [kw, kh, nin, nout])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
37
    if len(args) == 1:
Lukasz Kaiser's avatar
Lukasz Kaiser committed
38
      arg = args[0]
Lukasz Kaiser's avatar
Lukasz Kaiser committed
39
    else:
40
      arg = tf.concat(axis=3, values=args)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
41
    res = tf.nn.convolution(arg, k, dilation_rate=(rate, 1), padding="SAME")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
42
    if not do_bias: return res
Lukasz Kaiser's avatar
Lukasz Kaiser committed
43
44
45
46
47
    with tf.device("/cpu:0"):
      bias_term = tf.get_variable(
          "CvB", [nout], initializer=tf.constant_initializer(bias_start))
    bias_term = tf.reshape(bias_term, [1, 1, 1, nout])
    return res + bias_term
Lukasz Kaiser's avatar
Lukasz Kaiser committed
48
49
50
51
52
53
54


def sigmoid_cutoff(x, cutoff):
  """Sigmoid with cutoff, e.g., 1.2sigmoid(x) - 0.1."""
  y = tf.sigmoid(x)
  if cutoff < 1.01: return y
  d = (cutoff - 1.0) / 2.0
Lukasz Kaiser's avatar
Lukasz Kaiser committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
  return tf.minimum(1.0, tf.maximum(0.0, cutoff * y - d), name="cutoff_min")


@function.Defun(tf.float32, noinline=True)
def sigmoid_cutoff_12(x):
  """Sigmoid with cutoff 1.2, specialized for speed and memory use."""
  y = tf.sigmoid(x)
  return tf.minimum(1.0, tf.maximum(0.0, 1.2 * y - 0.1), name="cutoff_min_12")


@function.Defun(tf.float32, noinline=True)
def sigmoid_hard(x):
  """Hard sigmoid."""
  return tf.minimum(1.0, tf.maximum(0.0, 0.25 * x + 0.5))


def place_at14(decided, selected, it):
  """Place selected at it-th coordinate of decided, dim=1 of 4."""
  slice1 = decided[:, :it, :, :]
  slice2 = decided[:, it + 1:, :, :]
75
  return tf.concat(axis=1, values=[slice1, selected, slice2])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
76
77
78
79
80
81


def place_at13(decided, selected, it):
  """Place selected at it-th coordinate of decided, dim=1 of 3."""
  slice1 = decided[:, :it, :]
  slice2 = decided[:, it + 1:, :]
82
  return tf.concat(axis=1, values=[slice1, selected, slice2])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
83
84


85
86
87
88
89
90
91
92
def tanh_cutoff(x, cutoff):
  """Tanh with cutoff, e.g., 1.1tanh(x) cut to [-1. 1]."""
  y = tf.tanh(x)
  if cutoff < 1.01: return y
  d = (cutoff - 1.0) / 2.0
  return tf.minimum(1.0, tf.maximum(-1.0, (1.0 + d) * y))


Lukasz Kaiser's avatar
Lukasz Kaiser committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
@function.Defun(tf.float32, noinline=True)
def tanh_hard(x):
  """Hard tanh."""
  return tf.minimum(1.0, tf.maximum(0.0, x))


def layer_norm(x, nmaps, prefix, epsilon=1e-5):
  """Layer normalize the 4D tensor x, averaging over the last dimension."""
  with tf.variable_scope(prefix):
    scale = tf.get_variable("layer_norm_scale", [nmaps],
                            initializer=tf.ones_initializer())
    bias = tf.get_variable("layer_norm_bias", [nmaps],
                           initializer=tf.zeros_initializer())
    mean, variance = tf.nn.moments(x, [3], keep_dims=True)
    norm_x = (x - mean) / tf.sqrt(variance + epsilon)
    return norm_x * scale + bias


def conv_gru(inpts, mem, kw, kh, nmaps, rate, cutoff, prefix, do_layer_norm,
             args_len=None):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
113
114
  """Convolutional GRU."""
  def conv_lin(args, suffix, bias_start):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    total_args_len = args_len or len(args) * nmaps
    res = conv_linear(args, kw, kh, total_args_len, nmaps, rate, True,
                      bias_start, prefix + "/" + suffix)
    if do_layer_norm:
      return layer_norm(res, nmaps, prefix + "/" + suffix)
    else:
      return res
  if cutoff == 1.2:
    reset = sigmoid_cutoff_12(conv_lin(inpts + [mem], "r", 1.0))
    gate = sigmoid_cutoff_12(conv_lin(inpts + [mem], "g", 1.0))
  elif cutoff > 10:
    reset = sigmoid_hard(conv_lin(inpts + [mem], "r", 1.0))
    gate = sigmoid_hard(conv_lin(inpts + [mem], "g", 1.0))
  else:
    reset = sigmoid_cutoff(conv_lin(inpts + [mem], "r", 1.0), cutoff)
    gate = sigmoid_cutoff(conv_lin(inpts + [mem], "g", 1.0), cutoff)
  if cutoff > 10:
132
    candidate = tanh_hard(conv_lin(inpts + [reset * mem], "c", 0.0))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
133
134
135
  else:
    # candidate = tanh_cutoff(conv_lin(inpts + [reset * mem], "c", 0.0), cutoff)
    candidate = tf.tanh(conv_lin(inpts + [reset * mem], "c", 0.0))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
136
137
138
  return gate * mem + (1 - gate) * candidate


Lukasz Kaiser's avatar
Lukasz Kaiser committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
CHOOSE_K = 256


def memory_call(q, l, nmaps, mem_size, vocab_size, num_gpus, update_mem):
  raise ValueError("Fill for experiments with additional memory structures.")


def memory_run(step, nmaps, mem_size, batch_size, vocab_size,
               global_step, do_training, update_mem, decay_factor, num_gpus,
               target_emb_weights, output_w, gpu_targets_tn, it):
  """Run memory."""
  q = step[:, 0, it, :]
  mlabels = gpu_targets_tn[:, it, 0]
  res, mask, mem_loss = memory_call(
      q, mlabels, nmaps, mem_size, vocab_size, num_gpus, update_mem)
  res = tf.gather(target_emb_weights, res) * tf.expand_dims(mask[:, 0], 1)

  # Mix gold and original in the first steps, 20% later.
  gold = tf.nn.dropout(tf.gather(target_emb_weights, mlabels), 0.7)
  use_gold = 1.0 - tf.cast(global_step, tf.float32) / (1000. * decay_factor)
  use_gold = tf.maximum(use_gold, 0.2) * do_training
  mem = tf.cond(tf.less(tf.random_uniform([]), use_gold),
                lambda: use_gold * gold + (1.0 - use_gold) * res,
                lambda: res)
  mem = tf.reshape(mem, [-1, 1, 1, nmaps])
  return mem, mem_loss, update_mem


167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
@tf.RegisterGradient("CustomIdG")
def _custom_id_grad(_, grads):
  return grads


def quantize(t, quant_scale, max_value=1.0):
  """Quantize a tensor t with each element in [-max_value, max_value]."""
  t = tf.minimum(max_value, tf.maximum(t, -max_value))
  big = quant_scale * (t + max_value) + 0.5
  with tf.get_default_graph().gradient_override_map({"Floor": "CustomIdG"}):
    res = (tf.floor(big) / quant_scale) - max_value
  return res


def quantize_weights_op(quant_scale, max_value):
  ops = [v.assign(quantize(v, quant_scale, float(max_value)))
         for v in tf.trainable_variables()]
  return tf.group(*ops)


Lukasz Kaiser's avatar
Lukasz Kaiser committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
def autoenc_quantize(x, nbits, nmaps, do_training, layers=1):
  """Autoencoder into nbits vectors of bits, using noise and sigmoids."""
  enc_x = tf.reshape(x, [-1, nmaps])
  for i in xrange(layers - 1):
    enc_x = tf.layers.dense(enc_x, nmaps, name="autoenc_%d" % i)
  enc_x = tf.layers.dense(enc_x, nbits, name="autoenc_%d" % (layers - 1))
  noise = tf.truncated_normal(tf.shape(enc_x), stddev=2.0)
  dec_x = sigmoid_cutoff_12(enc_x + noise * do_training)
  dec_x = tf.reshape(dec_x, [-1, nbits])
  for i in xrange(layers):
    dec_x = tf.layers.dense(dec_x, nmaps, name="autodec_%d" % i)
  return tf.reshape(dec_x, tf.shape(x))


def make_dense(targets, noclass, low_param):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
202
  """Move a batch of targets to a dense 1-hot representation."""
Lukasz Kaiser's avatar
Lukasz Kaiser committed
203
204
205
206
207
208
209
210
211
212
213
214
  low = low_param / float(noclass - 1)
  high = 1.0 - low * (noclass - 1)
  targets = tf.cast(targets, tf.int64)
  return tf.one_hot(targets, depth=noclass, on_value=high, off_value=low)


def reorder_beam(beam_size, batch_size, beam_val, output, is_first,
                 tensors_to_reorder):
  """Reorder to minimize beam costs."""
  # beam_val is [batch_size x beam_size]; let b = batch_size * beam_size
  # decided is len x b x a x b
  # output is b x out_size; step is b x len x a x b;
215
  outputs = tf.split(axis=0, num_or_size_splits=beam_size, value=tf.nn.log_softmax(output))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
216
217
218
219
220
221
222
223
224
  all_beam_vals, all_beam_idx = [], []
  beam_range = 1 if is_first else beam_size
  for i in xrange(beam_range):
    top_out, top_out_idx = tf.nn.top_k(outputs[i], k=beam_size)
    cur_beam_val = beam_val[:, i]
    top_out = tf.Print(top_out, [top_out, top_out_idx, beam_val, i,
                                 cur_beam_val], "GREPO", summarize=8)
    all_beam_vals.append(top_out + tf.expand_dims(cur_beam_val, 1))
    all_beam_idx.append(top_out_idx)
225
  all_beam_idx = tf.reshape(tf.transpose(tf.concat(axis=1, values=all_beam_idx), [1, 0]),
Lukasz Kaiser's avatar
Lukasz Kaiser committed
226
                            [-1])
227
  top_beam, top_beam_idx = tf.nn.top_k(tf.concat(axis=1, values=all_beam_vals), k=beam_size)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
228
229
230
231
232
233
234
235
236
237
238
239
  top_beam_idx = tf.Print(top_beam_idx, [top_beam, top_beam_idx],
                          "GREP", summarize=8)
  reordered = [[] for _ in xrange(len(tensors_to_reorder) + 1)]
  top_out_idx = []
  for i in xrange(beam_size):
    which_idx = top_beam_idx[:, i] * batch_size + tf.range(batch_size)
    top_out_idx.append(tf.gather(all_beam_idx, which_idx))
    which_beam = top_beam_idx[:, i] / beam_size  # [batch]
    which_beam = which_beam * batch_size + tf.range(batch_size)
    reordered[0].append(tf.gather(output, which_beam))
    for i, t in enumerate(tensors_to_reorder):
      reordered[i + 1].append(tf.gather(t, which_beam))
240
241
  new_tensors = [tf.concat(axis=0, values=t) for t in reordered]
  top_out_idx = tf.concat(axis=0, values=top_out_idx)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
242
  return (top_beam, new_tensors[0], top_out_idx, new_tensors[1:])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
243
244
245
246
247


class NeuralGPU(object):
  """Neural GPU Model."""

Lukasz Kaiser's avatar
Lukasz Kaiser committed
248
249
250
251
252
253
  def __init__(self, nmaps, vec_size, niclass, noclass, dropout,
               max_grad_norm, cutoff, nconvs, kw, kh, height, mem_size,
               learning_rate, min_length, num_gpus, num_replicas,
               grad_noise_scale, sampling_rate, act_noise=0.0, do_rnn=False,
               atrous=False, beam_size=1, backward=True, do_layer_norm=False,
               autoenc_decay=1.0):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
254
    # Feeds for parameters and ops to update them.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
255
256
257
258
259
260
261
    self.nmaps = nmaps
    if backward:
      self.global_step = tf.Variable(0, trainable=False, name="global_step")
      self.cur_length = tf.Variable(min_length, trainable=False)
      self.cur_length_incr_op = self.cur_length.assign_add(1)
      self.lr = tf.Variable(learning_rate, trainable=False)
      self.lr_decay_op = self.lr.assign(self.lr * 0.995)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
262
    self.do_training = tf.placeholder(tf.float32, name="do_training")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
263
    self.update_mem = tf.placeholder(tf.int32, name="update_mem")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
264
265
266
    self.noise_param = tf.placeholder(tf.float32, name="noise_param")

    # Feeds for inputs, targets, outputs, losses, etc.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
267
268
269
    self.input = tf.placeholder(tf.int32, name="inp")
    self.target = tf.placeholder(tf.int32, name="tgt")
    self.prev_step = tf.placeholder(tf.float32, name="prev_step")
270
271
272
    gpu_input = tf.split(axis=0, num_or_size_splits=num_gpus, value=self.input)
    gpu_target = tf.split(axis=0, num_or_size_splits=num_gpus, value=self.target)
    gpu_prev_step = tf.split(axis=0, num_or_size_splits=num_gpus, value=self.prev_step)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
273
274
275
276
    batch_size = tf.shape(gpu_input[0])[0]

    if backward:
      adam_lr = 0.005 * self.lr
277
      adam = tf.train.AdamOptimizer(adam_lr, epsilon=1e-3)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

      def adam_update(grads):
        return adam.apply_gradients(zip(grads, tf.trainable_variables()),
                                    global_step=self.global_step,
                                    name="adam_update")

    # When switching from Adam to SGD we perform reverse-decay.
    if backward:
      global_step_float = tf.cast(self.global_step, tf.float32)
      sampling_decay_exponent = global_step_float / 100000.0
      sampling_decay = tf.maximum(0.05, tf.pow(0.5, sampling_decay_exponent))
      self.sampling = sampling_rate * 0.05 / sampling_decay
    else:
      self.sampling = tf.constant(0.0)

    # Cache variables on cpu if needed.
    if num_replicas > 1 or num_gpus > 1:
      with tf.device("/cpu:0"):
        caching_const = tf.constant(0)
      tf.get_variable_scope().set_caching_device(caching_const.op.device)
      # partitioner = tf.variable_axis_size_partitioner(1024*256*4)
      # tf.get_variable_scope().set_partitioner(partitioner)

    def gpu_avg(l):
      if l[0] is None:
        for elem in l:
          assert elem is None
        return 0.0
      if len(l) < 2:
        return l[0]
      return sum(l) / float(num_gpus)

    self.length_tensor = tf.placeholder(tf.int32, name="length")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
311
312
313
314
315

    with tf.device("/cpu:0"):
      emb_weights = tf.get_variable(
          "embedding", [niclass, vec_size],
          initializer=tf.random_uniform_initializer(-1.7, 1.7))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
316
317
318
319
      if beam_size > 0:
        target_emb_weights = tf.get_variable(
            "target_embedding", [noclass, nmaps],
            initializer=tf.random_uniform_initializer(-1.7, 1.7))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
320
321
322
      e0 = tf.scatter_update(emb_weights,
                             tf.constant(0, dtype=tf.int32, shape=[1]),
                             tf.zeros([1, vec_size]))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
      output_w = tf.get_variable("output_w", [nmaps, noclass], tf.float32)

    def conv_rate(layer):
      if atrous:
        return 2**layer
      return 1

    # pylint: disable=cell-var-from-loop
    def enc_step(step):
      """Encoder step."""
      if autoenc_decay < 1.0:
        quant_step = autoenc_quantize(step, 16, nmaps, self.do_training)
        if backward:
          exp_glob = tf.train.exponential_decay(1.0, self.global_step - 10000,
                                                1000, autoenc_decay)
          dec_factor = 1.0 - exp_glob  # * self.do_training
          dec_factor = tf.cond(tf.less(self.global_step, 10500),
                               lambda: tf.constant(0.05), lambda: dec_factor)
        else:
          dec_factor = 1.0
        cur = tf.cond(tf.less(tf.random_uniform([]), dec_factor),
                      lambda: quant_step, lambda: step)
      else:
        cur = step
      if dropout > 0.0001:
        cur = tf.nn.dropout(cur, keep_prob)
      if act_noise > 0.00001:
        cur += tf.truncated_normal(tf.shape(cur)) * act_noise_scale
      # Do nconvs-many CGRU steps.
      if do_jit and tf.get_variable_scope().reuse:
        with jit_scope():
          for layer in xrange(nconvs):
            cur = conv_gru([], cur, kw, kh, nmaps, conv_rate(layer),
                           cutoff, "ecgru_%d" % layer, do_layer_norm)
      else:
        for layer in xrange(nconvs):
          cur = conv_gru([], cur, kw, kh, nmaps, conv_rate(layer),
                         cutoff, "ecgru_%d" % layer, do_layer_norm)
      return cur

    zero_tgt = tf.zeros([batch_size, nmaps, 1])
    zero_tgt.set_shape([None, nmaps, 1])

    def dec_substep(step, decided):
      """Decoder sub-step."""
      cur = step
      if dropout > 0.0001:
        cur = tf.nn.dropout(cur, keep_prob)
      if act_noise > 0.00001:
        cur += tf.truncated_normal(tf.shape(cur)) * act_noise_scale
      # Do nconvs-many CGRU steps.
      if do_jit and tf.get_variable_scope().reuse:
        with jit_scope():
          for layer in xrange(nconvs):
            cur = conv_gru([decided], cur, kw, kh, nmaps, conv_rate(layer),
                           cutoff, "dcgru_%d" % layer, do_layer_norm)
      else:
        for layer in xrange(nconvs):
          cur = conv_gru([decided], cur, kw, kh, nmaps, conv_rate(layer),
                         cutoff, "dcgru_%d" % layer, do_layer_norm)
      return cur
    # pylint: enable=cell-var-from-loop

    def dec_step(step, it, it_int, decided, output_ta, tgts,
                 mloss, nupd_in, out_idx, beam_cost):
      """Decoder step."""
      nupd, mem_loss = 0, 0.0
      if mem_size > 0:
        it_incr = tf.minimum(it+1, length - 1)
        mem, mem_loss, nupd = memory_run(
            step, nmaps, mem_size, batch_size, noclass, self.global_step,
            self.do_training, self.update_mem, 10, num_gpus,
            target_emb_weights, output_w, gpu_targets_tn, it_incr)
      step = dec_substep(step, decided)
      output_l = tf.expand_dims(tf.expand_dims(step[:, it, 0, :], 1), 1)
      # Calculate argmax output.
      output = tf.reshape(output_l, [-1, nmaps])
      # pylint: disable=cell-var-from-loop
      output = tf.matmul(output, output_w)
      if beam_size > 1:
        beam_cost, output, out, reordered = reorder_beam(
            beam_size, batch_size, beam_cost, output, it_int == 0,
            [output_l, out_idx, step, decided])
        [output_l, out_idx, step, decided] = reordered
      else:
        # Scheduled sampling.
        out = tf.multinomial(tf.stop_gradient(output), 1)
        out = tf.to_int32(tf.squeeze(out, [1]))
      out_write = output_ta.write(it, output_l[:batch_size, :, :, :])
      output = tf.gather(target_emb_weights, out)
      output = tf.reshape(output, [-1, 1, nmaps])
414
      output = tf.concat(axis=1, values=[output] * height)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
415
416
417
418
419
420
421
422
      tgt = tgts[it, :, :, :]
      selected = tf.cond(tf.less(tf.random_uniform([]), self.sampling),
                         lambda: output, lambda: tgt)
      # pylint: enable=cell-var-from-loop
      dec_write = place_at14(decided, tf.expand_dims(selected, 1), it)
      out_idx = place_at13(
          out_idx, tf.reshape(out, [beam_size * batch_size, 1, 1]), it)
      if mem_size > 0:
423
        mem = tf.concat(axis=2, values=[mem] * height)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
        dec_write = place_at14(dec_write, mem, it_incr)
      return (step, dec_write, out_write, mloss + mem_loss, nupd_in + nupd,
              out_idx, beam_cost)

    # Main model construction.
    gpu_outputs = []
    gpu_losses = []
    gpu_grad_norms = []
    grads_list = []
    gpu_out_idx = []
    self.after_enc_step = []
    for gpu in xrange(num_gpus):  # Multi-GPU towers, average gradients later.
      length = self.length_tensor
      length_float = tf.cast(length, tf.float32)
      if gpu > 0:
Lukasz Kaiser's avatar
Lukasz Kaiser committed
439
        tf.get_variable_scope().reuse_variables()
Lukasz Kaiser's avatar
Lukasz Kaiser committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
      gpu_outputs.append([])
      gpu_losses.append([])
      gpu_grad_norms.append([])
      with tf.name_scope("gpu%d" % gpu), tf.device("/gpu:%d" % gpu):
        # Main graph creation loop.
        data.print_out("Creating model.")
        start_time = time.time()

        # Embed inputs and calculate mask.
        with tf.device("/cpu:0"):
          tgt_shape = tf.shape(tf.squeeze(gpu_target[gpu], [1]))
          weights = tf.where(tf.squeeze(gpu_target[gpu], [1]) > 0,
                             tf.ones(tgt_shape), tf.zeros(tgt_shape))

          # Embed inputs and targets.
          with tf.control_dependencies([e0]):
            start = tf.gather(emb_weights, gpu_input[gpu])  # b x h x l x nmaps
            gpu_targets_tn = gpu_target[gpu]  # b x 1 x len
            if beam_size > 0:
              embedded_targets_tn = tf.gather(target_emb_weights,
                                              gpu_targets_tn)
              embedded_targets_tn = tf.transpose(
                  embedded_targets_tn, [2, 0, 1, 3])  # len x b x 1 x nmaps
463
              embedded_targets_tn = tf.concat(axis=2, values=[embedded_targets_tn] * height)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

        # First image comes from start by applying convolution and adding 0s.
        start = tf.transpose(start, [0, 2, 1, 3])  # Now b x len x h x vec_s
        first = conv_linear(start, 1, 1, vec_size, nmaps, 1, True, 0.0, "input")
        first = layer_norm(first, nmaps, "input")

        # Computation steps.
        keep_prob = dropout * 3.0 / tf.sqrt(length_float)
        keep_prob = 1.0 - self.do_training * keep_prob
        act_noise_scale = act_noise * self.do_training

        # Start with a convolutional gate merging previous step.
        step = conv_gru([gpu_prev_step[gpu]], first,
                        kw, kh, nmaps, 1, cutoff, "first", do_layer_norm)

        # This is just for running a baseline RNN seq2seq model.
        if do_rnn:
          self.after_enc_step.append(step)  # Not meaningful here, but needed.
482
483
484
485
          def lstm_cell():
            return tf.contrib.rnn.BasicLSTMCell(height * nmaps)
          cell = tf.contrib.rnn.MultiRNNCell(
              [lstm_cell() for _ in range(nconvs)])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
          with tf.variable_scope("encoder"):
            encoder_outputs, encoder_state = tf.nn.dynamic_rnn(
                cell, tf.reshape(step, [batch_size, length, height * nmaps]),
                dtype=tf.float32, time_major=False)

          # Attention.
          attn = tf.layers.dense(
              encoder_outputs, height * nmaps, name="attn1")

          # pylint: disable=cell-var-from-loop
          @function.Defun(noinline=True)
          def attention_query(query, attn_v):
            vecs = tf.tanh(attn + tf.expand_dims(query, 1))
            mask = tf.reduce_sum(vecs * tf.reshape(attn_v, [1, 1, -1]), 2)
            mask = tf.nn.softmax(mask)
            return tf.reduce_sum(encoder_outputs * tf.expand_dims(mask, 2), 1)

          with tf.variable_scope("decoder"):
504
            def decoder_loop_fn(state__prev_cell_out__unused, cell_inp__cur_tgt):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
505
              """Decoder loop function."""
506
507
              state, prev_cell_out, _ = state__prev_cell_out__unused
              cell_inp, cur_tgt = cell_inp__cur_tgt
Lukasz Kaiser's avatar
Lukasz Kaiser committed
508
509
510
511
512
              attn_q = tf.layers.dense(prev_cell_out, height * nmaps,
                                       name="attn_query")
              attn_res = attention_query(attn_q, tf.get_variable(
                  "attn_v", [height * nmaps],
                  initializer=tf.random_uniform_initializer(-0.1, 0.1)))
513
              concatenated = tf.reshape(tf.concat(axis=1, values=[cell_inp, attn_res]),
Lukasz Kaiser's avatar
Lukasz Kaiser committed
514
515
516
517
518
519
520
521
522
523
524
525
526
                                        [batch_size, 2 * height * nmaps])
              cell_inp = tf.layers.dense(
                  concatenated, height * nmaps, name="attn_merge")
              output, new_state = cell(cell_inp, state)

              mem_loss = 0.0
              if mem_size > 0:
                res, mask, mem_loss = memory_call(
                    output, cur_tgt, height * nmaps, mem_size, noclass,
                    num_gpus, self.update_mem)
                res = tf.gather(target_emb_weights, res)
                res *= tf.expand_dims(mask[:, 0], 1)
                output = tf.layers.dense(
527
                    tf.concat(axis=1, values=[output, res]), height * nmaps, name="rnnmem")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
528
529
530
531
532
533

              return new_state, output, mem_loss
            # pylint: enable=cell-var-from-loop
            gpu_targets = tf.squeeze(gpu_target[gpu], [1])  # b x len
            gpu_tgt_trans = tf.transpose(gpu_targets, [1, 0])
            dec_zero = tf.zeros([batch_size, 1], dtype=tf.int32)
534
            dec_inp = tf.concat(axis=1, values=[dec_zero, gpu_targets])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
            dec_inp = dec_inp[:, :length]
            embedded_dec_inp = tf.gather(target_emb_weights, dec_inp)
            embedded_dec_inp_proj = tf.layers.dense(
                embedded_dec_inp, height * nmaps, name="dec_proj")
            embedded_dec_inp_proj = tf.transpose(embedded_dec_inp_proj,
                                                 [1, 0, 2])
            init_vals = (encoder_state,
                         tf.zeros([batch_size, height * nmaps]), 0.0)
            _, dec_outputs, mem_losses = tf.scan(
                decoder_loop_fn, (embedded_dec_inp_proj, gpu_tgt_trans),
                initializer=init_vals)
          mem_loss = tf.reduce_mean(mem_losses)
          outputs = tf.layers.dense(dec_outputs, nmaps, name="out_proj")
          # Final convolution to get logits, list outputs.
          outputs = tf.matmul(tf.reshape(outputs, [-1, nmaps]), output_w)
          outputs = tf.reshape(outputs, [length, batch_size, noclass])
          gpu_out_idx.append(tf.argmax(outputs, 2))
        else:  # Here we go with the Neural GPU.
          # Encoder.
          enc_length = length
          step = enc_step(step)  # First step hard-coded.
          # pylint: disable=cell-var-from-loop
          i = tf.constant(1)
          c = lambda i, _s: tf.less(i, enc_length)
          def enc_step_lambda(i, step):
            with tf.variable_scope(tf.get_variable_scope(), reuse=True):
              new_step = enc_step(step)
            return (i + 1, new_step)
          _, step = tf.while_loop(
              c, enc_step_lambda, [i, step],
              parallel_iterations=1, swap_memory=True)
          # pylint: enable=cell-var-from-loop

          self.after_enc_step.append(step)

          # Decoder.
          if beam_size > 0:
            output_ta = tf.TensorArray(
                dtype=tf.float32, size=length, dynamic_size=False,
                infer_shape=False, name="outputs")
            out_idx = tf.zeros([beam_size * batch_size, length, 1],
                               dtype=tf.int32)
            decided_t = tf.zeros([beam_size * batch_size, length,
                                  height, vec_size])

            # Prepare for beam search.
581
            tgts = tf.concat(axis=1, values=[embedded_targets_tn] * beam_size)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
582
            beam_cost = tf.zeros([batch_size, beam_size])
583
            step = tf.concat(axis=0, values=[step] * beam_size)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
            # First step hard-coded.
            step, decided_t, output_ta, mem_loss, nupd, oi, bc = dec_step(
                step, 0, 0, decided_t, output_ta, tgts, 0.0, 0, out_idx,
                beam_cost)
            tf.get_variable_scope().reuse_variables()
            # pylint: disable=cell-var-from-loop
            def step_lambda(i, step, dec_t, out_ta, ml, nu, oi, bc):
              with tf.variable_scope(tf.get_variable_scope(), reuse=True):
                s, d, t, nml, nu, oi, bc = dec_step(
                    step, i, 1, dec_t, out_ta, tgts, ml, nu, oi, bc)
              return (i + 1, s, d, t, nml, nu, oi, bc)
            i = tf.constant(1)
            c = lambda i, _s, _d, _o, _ml, _nu, _oi, _bc: tf.less(i, length)
            _, step, _, output_ta, mem_loss, nupd, out_idx, _ = tf.while_loop(
                c, step_lambda,
                [i, step, decided_t, output_ta, mem_loss, nupd, oi, bc],
                parallel_iterations=1, swap_memory=True)
            # pylint: enable=cell-var-from-loop
            gpu_out_idx.append(tf.squeeze(out_idx, [2]))
            outputs = output_ta.stack()
            outputs = tf.squeeze(outputs, [2, 3])  # Now l x b x nmaps
          else:
            # If beam_size is 0 or less, we don't have a decoder.
            mem_loss = 0.0
            outputs = tf.transpose(step[:, :, 1, :], [1, 0, 2])
            gpu_out_idx.append(tf.argmax(outputs, 2))

          # Final convolution to get logits, list outputs.
          outputs = tf.matmul(tf.reshape(outputs, [-1, nmaps]), output_w)
          outputs = tf.reshape(outputs, [length, batch_size, noclass])
        gpu_outputs[gpu] = tf.nn.softmax(outputs)

        # Calculate cross-entropy loss and normalize it.
        targets_soft = make_dense(tf.squeeze(gpu_target[gpu], [1]),
                                  noclass, 0.1)
        targets_soft = tf.reshape(targets_soft, [-1, noclass])
        targets_hard = make_dense(tf.squeeze(gpu_target[gpu], [1]),
                                  noclass, 0.0)
        targets_hard = tf.reshape(targets_hard, [-1, noclass])
        output = tf.transpose(outputs, [1, 0, 2])
        xent_soft = tf.reshape(tf.nn.softmax_cross_entropy_with_logits(
            logits=tf.reshape(output, [-1, noclass]), labels=targets_soft),
                               [batch_size, length])
        xent_hard = tf.reshape(tf.nn.softmax_cross_entropy_with_logits(
            logits=tf.reshape(output, [-1, noclass]), labels=targets_hard),
                               [batch_size, length])
        low, high = 0.1 / float(noclass - 1), 0.9
        const = high * tf.log(high) + float(noclass - 1) * low * tf.log(low)
        weight_sum = tf.reduce_sum(weights) + 1e-20
        true_perp = tf.reduce_sum(xent_hard * weights) / weight_sum
        soft_loss = tf.reduce_sum(xent_soft * weights) / weight_sum
        perp_loss = soft_loss + const
        # Final loss: cross-entropy + shared parameter relaxation part + extra.
        mem_loss = 0.5 * tf.reduce_mean(mem_loss) / length_float
        total_loss = perp_loss + mem_loss
        gpu_losses[gpu].append(true_perp)

        # Gradients.
        if backward:
          data.print_out("Creating backward pass for the model.")
          grads = tf.gradients(
              total_loss, tf.trainable_variables(),
              colocate_gradients_with_ops=True)
          for g_i, g in enumerate(grads):
            if isinstance(g, tf.IndexedSlices):
              grads[g_i] = tf.convert_to_tensor(g)
          grads, norm = tf.clip_by_global_norm(grads, max_grad_norm)
          gpu_grad_norms[gpu].append(norm)
          for g in grads:
            if grad_noise_scale > 0.001:
              g += tf.truncated_normal(tf.shape(g)) * self.noise_param
          grads_list.append(grads)
        else:
          gpu_grad_norms[gpu].append(0.0)
        data.print_out("Created model for gpu %d in %.2f s."
                       % (gpu, time.time() - start_time))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
660

Lukasz Kaiser's avatar
Lukasz Kaiser committed
661
    self.updates = []
662
    self.after_enc_step = tf.concat(axis=0, values=self.after_enc_step)  # Concat GPUs.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
663
664
665
666
667
668
669
670
671
672
673
674
    if backward:
      tf.get_variable_scope()._reuse = False
      tf.get_variable_scope().set_caching_device(None)
      grads = [gpu_avg([grads_list[g][i] for g in xrange(num_gpus)])
               for i in xrange(len(grads_list[0]))]
      update = adam_update(grads)
      self.updates.append(update)
    else:
      self.updates.append(tf.no_op())

    self.losses = [gpu_avg([gpu_losses[g][i] for g in xrange(num_gpus)])
                   for i in xrange(len(gpu_losses[0]))]
675
    self.out_idx = tf.concat(axis=0, values=gpu_out_idx)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
676
677
    self.grad_norms = [gpu_avg([gpu_grad_norms[g][i] for g in xrange(num_gpus)])
                       for i in xrange(len(gpu_grad_norms[0]))]
678
    self.outputs = [tf.concat(axis=1, values=[gpu_outputs[g] for g in xrange(num_gpus)])]
Lukasz Kaiser's avatar
Lukasz Kaiser committed
679
680
681
682
683
684
    self.quantize_op = quantize_weights_op(512, 8)
    if backward:
      self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=10)

  def step(self, sess, inp, target, do_backward_in, noise_param=None,
           beam_size=2, eos_id=2, eos_cost=0.0, update_mem=None, state=None):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
685
    """Run a step of the network."""
Lukasz Kaiser's avatar
Lukasz Kaiser committed
686
687
688
689
690
691
692
693
    batch_size, height, length = inp.shape[0], inp.shape[1], inp.shape[2]
    do_backward = do_backward_in
    train_mode = True
    if do_backward_in is None:
      do_backward = False
      train_mode = False
    if update_mem is None:
      update_mem = do_backward
Lukasz Kaiser's avatar
Lukasz Kaiser committed
694
    feed_in = {}
Lukasz Kaiser's avatar
Lukasz Kaiser committed
695
696
697
698
699
    # print "    feeding sequences of length %d" % length
    if state is None:
      state = np.zeros([batch_size, length, height, self.nmaps])
    feed_in[self.prev_step.name] = state
    feed_in[self.length_tensor.name] = length
Lukasz Kaiser's avatar
Lukasz Kaiser committed
700
701
    feed_in[self.noise_param.name] = noise_param if noise_param else 0.0
    feed_in[self.do_training.name] = 1.0 if do_backward else 0.0
Lukasz Kaiser's avatar
Lukasz Kaiser committed
702
703
704
705
    feed_in[self.update_mem.name] = 1 if update_mem else 0
    if do_backward_in is False:
      feed_in[self.sampling.name] = 0.0
    index = 0  # We're dynamic now.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
706
707
708
709
    feed_out = []
    if do_backward:
      feed_out.append(self.updates[index])
      feed_out.append(self.grad_norms[index])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
    if train_mode:
      feed_out.append(self.losses[index])
    feed_in[self.input.name] = inp
    feed_in[self.target.name] = target
    feed_out.append(self.outputs[index])
    if train_mode:
      # Make a full-sequence training step with one call to session.run.
      res = sess.run([self.after_enc_step] + feed_out, feed_in)
      after_enc_state, res = res[0], res[1:]
    else:
      # Make a full-sequence decoding step with one call to session.run.
      feed_in[self.sampling.name] = 1.1  # Sample every time.
      res = sess.run([self.after_enc_step, self.out_idx] + feed_out, feed_in)
      after_enc_state, out_idx = res[0], res[1]
      res = [res[2][l] for l in xrange(length)]
      outputs = [out_idx[:, i] for i in xrange(length)]
      cost = [0.0 for _ in xrange(beam_size * batch_size)]
      seen_eos = [0 for _ in xrange(beam_size * batch_size)]
      for idx, logit in enumerate(res):
        best = outputs[idx]
        for b in xrange(batch_size):
          if seen_eos[b] > 1:
            cost[b] -= eos_cost
          else:
            cost[b] += np.log(logit[b][best[b]])
          if best[b] in [eos_id]:
            seen_eos[b] += 1
      res = [[-c for c in cost]] + outputs
    # Collect and output results.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
739
740
741
742
743
    offset = 0
    norm = None
    if do_backward:
      offset = 2
      norm = res[1]
Lukasz Kaiser's avatar
Lukasz Kaiser committed
744
745
746
747
    if train_mode:
      outputs = res[offset + 1]
      outputs = [outputs[l] for l in xrange(length)]
    return res[offset], outputs, norm, after_enc_state