"csrc/multi_tensor_l2norm_kernel_mp.cu" did not exist on "79906517e1e99c0cfc348ed2e6e716e7b8bd608c"
schedules_test.py 5.06 KB
Newer Older
1
2
3
4
5
6
7
8
9
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

"""Tests for common.schedules."""

from math import exp
from math import sqrt
import numpy as np
10
from six.moves import xrange
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import tensorflow as tf

from common import config_lib  # brain coder
from common import schedules  # brain coder


class SchedulesTest(tf.test.TestCase):

  def ScheduleTestHelper(self, config, schedule_subtype, io_values):
    """Run common checks for schedules.

    Args:
      config: Config object which is passed into schedules.make_schedule.
      schedule_subtype: The expected schedule type to be instantiated.
      io_values: List of (input, output) pairs. Must be in ascending input
          order. No duplicate inputs.
    """

    # Check that make_schedule makes the correct type.
    f = schedules.make_schedule(config)
    self.assertTrue(isinstance(f, schedule_subtype))

    # Check that multiple instances returned from make_schedule behave the same.
    fns = [schedules.make_schedule(config) for _ in xrange(3)]

    # Check that all the inputs map to the right outputs.
    for i, o in io_values:
      for f in fns:
        f_out = f(i)
        self.assertTrue(
            np.isclose(o, f_out),
            'Wrong value at input %d. Expected %s, got %s' % (i, o, f_out))

    # Check that a subset of the io_values are still correct.
    f = schedules.make_schedule(config)
    subseq = [io_values[i**2] for i in xrange(int(sqrt(len(io_values))))]
    if subseq[-1] != io_values[-1]:
      subseq.append(io_values[-1])
    for i, o in subseq:
      f_out = f(i)
      self.assertTrue(
          np.isclose(o, f_out),
          'Wrong value at input %d. Expected %s, got %s' % (i, o, f_out))

    # Check duplicate calls.
    f = schedules.make_schedule(config)
    for i, o in io_values:
      for _ in xrange(3):
        f_out = f(i)
        self.assertTrue(
            np.isclose(o, f_out),
            'Duplicate calls at input %d are not equal. Expected %s, got %s'
            % (i, o, f_out))

  def testConstSchedule(self):
    self.ScheduleTestHelper(
        config_lib.Config(fn='const', const=5),
        schedules.ConstSchedule,
        [(0, 5), (1, 5), (10, 5), (20, 5), (100, 5), (1000000, 5)])

  def testLinearDecaySchedule(self):
    self.ScheduleTestHelper(
        config_lib.Config(fn='linear_decay', initial=2, final=0, start_time=10,
                          end_time=20),
        schedules.LinearDecaySchedule,
        [(0, 2), (1, 2), (10, 2), (11, 1.8), (15, 1), (19, 0.2), (20, 0),
         (100000, 0)])

    # Test step function.
    self.ScheduleTestHelper(
        config_lib.Config(fn='linear_decay', initial=2, final=0, start_time=10,
                          end_time=10),
        schedules.LinearDecaySchedule,
        [(0, 2), (1, 2), (10, 2), (11, 0), (15, 0)])

  def testExponentialDecaySchedule(self):
    self.ScheduleTestHelper(
        config_lib.Config(fn='exp_decay', initial=exp(-1), final=exp(-6),
                          start_time=10, end_time=20),
        schedules.ExponentialDecaySchedule,
        [(0, exp(-1)), (1, exp(-1)), (10, exp(-1)), (11, exp(-1/2. - 1)),
         (15, exp(-5/2. - 1)), (19, exp(-9/2. - 1)), (20, exp(-6)),
         (100000, exp(-6))])

    # Test step function.
    self.ScheduleTestHelper(
        config_lib.Config(fn='exp_decay', initial=exp(-1), final=exp(-6),
                          start_time=10, end_time=10),
        schedules.ExponentialDecaySchedule,
        [(0, exp(-1)), (1, exp(-1)), (10, exp(-1)), (11, exp(-6)),
         (15, exp(-6))])

  def testSmootherstepDecaySchedule(self):
    self.ScheduleTestHelper(
        config_lib.Config(fn='smooth_decay', initial=2, final=0, start_time=10,
                          end_time=20),
        schedules.SmootherstepDecaySchedule,
        [(0, 2), (1, 2), (10, 2), (11, 1.98288), (15, 1), (19, 0.01712),
         (20, 0), (100000, 0)])

    # Test step function.
    self.ScheduleTestHelper(
        config_lib.Config(fn='smooth_decay', initial=2, final=0, start_time=10,
                          end_time=10),
        schedules.SmootherstepDecaySchedule,
        [(0, 2), (1, 2), (10, 2), (11, 0), (15, 0)])

  def testHardOscillatorSchedule(self):
    self.ScheduleTestHelper(
        config_lib.Config(fn='hard_osc', high=2, low=0, start_time=100,
                          period=10, transition_fraction=0.5),
        schedules.HardOscillatorSchedule,
        [(0, 2), (1, 2), (10, 2), (100, 2), (101, 1.2), (102, 0.4), (103, 0),
         (104, 0), (105, 0), (106, 0.8), (107, 1.6), (108, 2), (109, 2),
         (110, 2), (111, 1.2), (112, 0.4), (115, 0), (116, 0.8), (119, 2),
         (120, 2), (100001, 1.2), (100002, 0.4), (100005, 0), (100006, 0.8),
         (100010, 2)])

    # Test instantaneous step.
    self.ScheduleTestHelper(
        config_lib.Config(fn='hard_osc', high=2, low=0, start_time=100,
                          period=10, transition_fraction=0),
        schedules.HardOscillatorSchedule,
        [(0, 2), (1, 2), (10, 2), (99, 2), (100, 0), (104, 0), (105, 2),
         (106, 2), (109, 2), (110, 0)])


if __name__ == '__main__':
  tf.test.main()