evaluator.py 11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Detection model evaluator.

This file provides a generic evaluation method that can be used to evaluate a
DetectionModel.
"""
20

21
22
23
24
25
26
import logging
import tensorflow as tf

from object_detection import eval_util
from object_detection.core import prefetcher
from object_detection.core import standard_fields as fields
27
from object_detection.metrics import coco_evaluation
28
29
30
31
32
33
from object_detection.utils import object_detection_evaluation

# A dictionary of metric names to classes that implement the metric. The classes
# in the dictionary must implement
# utils.object_detection_evaluation.DetectionEvaluator interface.
EVAL_METRICS_CLASS_DICT = {
34
    'pascal_voc_detection_metrics':
35
        object_detection_evaluation.PascalDetectionEvaluator,
36
    'weighted_pascal_voc_detection_metrics':
37
        object_detection_evaluation.WeightedPascalDetectionEvaluator,
38
39
40
41
42
    'pascal_voc_instance_segmentation_metrics':
        object_detection_evaluation.PascalInstanceSegmentationEvaluator,
    'weighted_pascal_voc_instance_segmentation_metrics':
        object_detection_evaluation.WeightedPascalInstanceSegmentationEvaluator,
    'open_images_detection_metrics':
43
44
45
46
47
        object_detection_evaluation.OpenImagesDetectionEvaluator,
    'coco_detection_metrics':
        coco_evaluation.CocoDetectionEvaluator,
    'coco_mask_metrics':
        coco_evaluation.CocoMaskEvaluator,
48
49
}

50
51
EVAL_DEFAULT_METRIC = 'pascal_voc_detection_metrics'

52

53
54
55
56
def _extract_predictions_and_losses(model,
                                    create_input_dict_fn,
                                    ignore_groundtruth=False):
  """Constructs tensorflow detection graph and returns output tensors.
57
58
59
60
61
62
63

  Args:
    model: model to perform predictions with.
    create_input_dict_fn: function to create input tensor dictionaries.
    ignore_groundtruth: whether groundtruth should be ignored.

  Returns:
64
65
66
67
68
    prediction_groundtruth_dict: A dictionary with postprocessed tensors (keyed
      by standard_fields.DetectionResultsFields) and optional groundtruth
      tensors (keyed by standard_fields.InputDataFields).
    losses_dict: A dictionary containing detection losses. This is empty when
      ignore_groundtruth is true.
69
70
71
72
73
  """
  input_dict = create_input_dict_fn()
  prefetch_queue = prefetcher.prefetch(input_dict, capacity=500)
  input_dict = prefetch_queue.dequeue()
  original_image = tf.expand_dims(input_dict[fields.InputDataFields.image], 0)
74
75
76
77
  preprocessed_image, true_image_shapes = model.preprocess(
      tf.to_float(original_image))
  prediction_dict = model.predict(preprocessed_image, true_image_shapes)
  detections = model.postprocess(prediction_dict, true_image_shapes)
78

79
  groundtruth = None
80
  losses_dict = {}
81
  if not ignore_groundtruth:
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    groundtruth = {
        fields.InputDataFields.groundtruth_boxes:
            input_dict[fields.InputDataFields.groundtruth_boxes],
        fields.InputDataFields.groundtruth_classes:
            input_dict[fields.InputDataFields.groundtruth_classes],
        fields.InputDataFields.groundtruth_area:
            input_dict[fields.InputDataFields.groundtruth_area],
        fields.InputDataFields.groundtruth_is_crowd:
            input_dict[fields.InputDataFields.groundtruth_is_crowd],
        fields.InputDataFields.groundtruth_difficult:
            input_dict[fields.InputDataFields.groundtruth_difficult]
    }
    if fields.InputDataFields.groundtruth_group_of in input_dict:
      groundtruth[fields.InputDataFields.groundtruth_group_of] = (
          input_dict[fields.InputDataFields.groundtruth_group_of])
    if fields.DetectionResultFields.detection_masks in detections:
      groundtruth[fields.InputDataFields.groundtruth_instance_masks] = (
          input_dict[fields.InputDataFields.groundtruth_instance_masks])
100
101
102
103
104
105
106
107
    label_id_offset = 1
    model.provide_groundtruth(
        [input_dict[fields.InputDataFields.groundtruth_boxes]],
        [tf.one_hot(input_dict[fields.InputDataFields.groundtruth_classes]
                    - label_id_offset, depth=model.num_classes)])
    losses_dict.update(model.loss(prediction_dict, true_image_shapes))

  result_dict = eval_util.result_dict_for_single_example(
108
109
110
111
112
113
114
      original_image,
      input_dict[fields.InputDataFields.source_id],
      detections,
      groundtruth,
      class_agnostic=(
          fields.DetectionResultFields.detection_classes not in detections),
      scale_to_absolute=True)
115
  return result_dict, losses_dict
116
117
118
119
120
121
122
123
124
125
126
127
128
129


def get_evaluators(eval_config, categories):
  """Returns the evaluator class according to eval_config, valid for categories.

  Args:
    eval_config: evaluation configurations.
    categories: a list of categories to evaluate.
  Returns:
    An list of instances of DetectionEvaluator.

  Raises:
    ValueError: if metric is not in the metric class dictionary.
  """
130
131
132
133
134
135
136
  eval_metric_fn_keys = eval_config.metrics_set
  if not eval_metric_fn_keys:
    eval_metric_fn_keys = [EVAL_DEFAULT_METRIC]
  evaluators_list = []
  for eval_metric_fn_key in eval_metric_fn_keys:
    if eval_metric_fn_key not in EVAL_METRICS_CLASS_DICT:
      raise ValueError('Metric not found: {}'.format(eval_metric_fn_key))
Zhichao Lu's avatar
Zhichao Lu committed
137
138
    evaluators_list.append(
        EVAL_METRICS_CLASS_DICT[eval_metric_fn_key](categories=categories))
139
  return evaluators_list
140
141
142


def evaluate(create_input_dict_fn, create_model_fn, eval_config, categories,
143
             checkpoint_dir, eval_dir, graph_hook_fn=None, evaluator_list=None):
144
145
146
147
148
149
150
151
152
153
  """Evaluation function for detection models.

  Args:
    create_input_dict_fn: a function to create a tensor input dictionary.
    create_model_fn: a function that creates a DetectionModel.
    eval_config: a eval_pb2.EvalConfig protobuf.
    categories: a list of category dictionaries. Each dict in the list should
                have an integer 'id' field and string 'name' field.
    checkpoint_dir: directory to load the checkpoints to evaluate from.
    eval_dir: directory to write evaluation metrics summary to.
154
155
156
157
    graph_hook_fn: Optional function that is called after the training graph is
      completely built. This is helpful to perform additional changes to the
      training graph such as optimizing batchnorm. The function should modify
      the default graph.
158
159
    evaluator_list: Optional list of instances of DetectionEvaluator. If not
      given, this list of metrics is created according to the eval_config.
160
161
162
163

  Returns:
    metrics: A dictionary containing metric names and values from the latest
      run.
164
165
166
167
168
169
170
171
  """

  model = create_model_fn()

  if eval_config.ignore_groundtruth and not eval_config.export_path:
    logging.fatal('If ignore_groundtruth=True then an export_path is '
                  'required. Aborting!!!')

172
  tensor_dict, losses_dict = _extract_predictions_and_losses(
173
174
175
176
      model=model,
      create_input_dict_fn=create_input_dict_fn,
      ignore_groundtruth=eval_config.ignore_groundtruth)

177
178
179
  def _process_batch(tensor_dict, sess, batch_index, counters,
                     losses_dict=None):
    """Evaluates tensors in tensor_dict, losses_dict and visualizes examples.
180
181
182
183
184
185
186
187
188
189
190
191
192

    This function calls sess.run on tensor_dict, evaluating the original_image
    tensor only on the first K examples and visualizing detections overlaid
    on this original_image.

    Args:
      tensor_dict: a dictionary of tensors
      sess: tensorflow session
      batch_index: the index of the batch amongst all batches in the run.
      counters: a dictionary holding 'success' and 'skipped' fields which can
        be updated to keep track of number of successful and failed runs,
        respectively.  If these fields are not updated, then the success/skipped
        counter values shown at the end of evaluation will be incorrect.
193
      losses_dict: Optional dictonary of scalar loss tensors.
194
195
196

    Returns:
      result_dict: a dictionary of numpy arrays
197
198
      result_losses_dict: a dictionary of scalar losses. This is empty if input
        losses_dict is None.
199
200
    """
    try:
201
202
203
      if not losses_dict:
        losses_dict = {}
      result_dict, result_losses_dict = sess.run([tensor_dict, losses_dict])
204
205
206
207
208
      counters['success'] += 1
    except tf.errors.InvalidArgumentError:
      logging.info('Skipping image')
      counters['skipped'] += 1
      return {}
209
    global_step = tf.train.global_step(sess, tf.train.get_global_step())
210
211
212
    if batch_index < eval_config.num_visualizations:
      tag = 'image-{}'.format(batch_index)
      eval_util.visualize_detection_results(
213
214
215
216
          result_dict,
          tag,
          global_step,
          categories=categories,
217
218
          summary_dir=eval_dir,
          export_dir=eval_config.visualization_export_dir,
219
220
221
222
223
224
225
226
227
          show_groundtruth=eval_config.visualize_groundtruth_boxes,
          groundtruth_box_visualization_color=eval_config.
          groundtruth_box_visualization_color,
          min_score_thresh=eval_config.min_score_threshold,
          max_num_predictions=eval_config.max_num_boxes_to_visualize,
          skip_scores=eval_config.skip_scores,
          skip_labels=eval_config.skip_labels,
          keep_image_id_for_visualization_export=eval_config.
          keep_image_id_for_visualization_export)
228
    return result_dict, result_losses_dict
229
230

  variables_to_restore = tf.global_variables()
231
  global_step = tf.train.get_or_create_global_step()
232
  variables_to_restore.append(global_step)
233
234
235

  if graph_hook_fn: graph_hook_fn()

236
237
238
239
  if eval_config.use_moving_averages:
    variable_averages = tf.train.ExponentialMovingAverage(0.0)
    variables_to_restore = variable_averages.variables_to_restore()
  saver = tf.train.Saver(variables_to_restore)
240

241
242
243
244
  def _restore_latest_checkpoint(sess):
    latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
    saver.restore(sess, latest_checkpoint)

245
246
247
  if not evaluator_list:
    evaluator_list = get_evaluators(eval_config, categories)

248
  metrics = eval_util.repeated_checkpoint_run(
249
250
      tensor_dict=tensor_dict,
      summary_dir=eval_dir,
251
      evaluators=evaluator_list,
252
253
254
255
256
257
      batch_processor=_process_batch,
      checkpoint_dirs=[checkpoint_dir],
      variables_to_restore=None,
      restore_fn=_restore_latest_checkpoint,
      num_batches=eval_config.num_examples,
      eval_interval_secs=eval_config.eval_interval_secs,
258
259
260
      max_number_of_evaluations=(1 if eval_config.ignore_groundtruth else
                                 eval_config.max_evals
                                 if eval_config.max_evals else None),
261
262
      master=eval_config.eval_master,
      save_graph=eval_config.save_graph,
263
264
      save_graph_dir=(eval_dir if eval_config.save_graph else ''),
      losses_dict=losses_dict)
265
266

  return metrics