"...composable_kernel_onnxruntime.git" did not exist on "485ea46a40f6ed9310443a33541b494d042c57a8"
Commit 5519ae9e authored by liucong's avatar liucong
Browse files

增加migraphx后端io_bind方式推理

parent 84f95d56
# -*- coding: utf-8 -*-
"""
分类器示例
"""
import cv2
import argparse
import numpy as np
import onnxruntime as ort
def Preprocessing(pathOfImage):
# 读取图像
image = cv2.imread(pathOfImage, cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 调整大小,使短边为256,保持长宽比
ratio = float(256) / min(image.shape[0], image.shape[1])
if image.shape[0] > image.shape[1]:
new_size = [int(round(ratio * image.shape[0])), 256]
else:
new_size = [256, int(round(ratio * image.shape[1]))]
image = np.array(cv2.resize(image, (new_size[1],new_size[0])))
# 裁剪中心窗口为224*224
h, w, c = image.shape
start_x = w//2 - 224//2
start_y = h//2 - 224//2
image = image[start_y:start_y+224, start_x:start_x+224, :]
# transpose
image = image.transpose(2, 0, 1)
# 将输入数据转换为float32
img_data = image.astype('float32')
# normalize
mean_vec = np.array([123.675, 116.28, 103.53])
stddev_vec = np.array([58.395, 57.12, 57.375])
norm_img_data = np.zeros(img_data.shape).astype('float32')
for i in range(img_data.shape[0]):
norm_img_data[i,:,:] = (img_data[i,:,:] - mean_vec[i]) / stddev_vec[i]
# 调整尺寸
norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32')
return norm_img_data
def postprocess(scores,pathOfImage):
'''
Postprocessing with mxnet gluon
The function takes scores generated by the network and returns the class IDs in decreasing order
of probability
'''
with open('../Resource/synset.txt', 'r') as f:
labels = [l.rstrip() for l in f]
preds = np.squeeze(scores)
a = np.argsort(preds)[::-1]
print('class=%s ; probability=%f' %(labels[a[0]],preds[a[0]]))
text = 'class=%s ' % (labels[a[0]])
saveimage(pathOfImage,text)
def ort_seg_dcu(model_path,image):
provider_options=[{'device_id':'0','migraphx_fp16_enable':'true','dynamic_model':'false'}]
dcu_session = ort.InferenceSession(model_path, providers=['MIGraphXExecutionProvider'], provider_options=provider_options)
output_data = np.empty(dcu_session.get_outputs()[0].shape).astype(np.float32)
inputData={}
outputData={}
inputData[dcu_session.get_inputs()[0].name]=ort.OrtValue.ortvalue_from_numpy(image, device_type='cuda')
outputData[dcu_session.get_outputs()[0].name]=ort.OrtValue.ortvalue_from_numpy(output_data, device_type='cuda')
io_binding = dcu_session.io_binding()
io_binding.bind_input(
name=dcu_session.get_inputs()[0].name,
device_type=inputData[dcu_session.get_inputs()[0].name].device_name(),
device_id=0,
element_type=np.float32,
shape=inputData[dcu_session.get_inputs()[0].name].shape(),
buffer_ptr=inputData[dcu_session.get_inputs()[0].name].data_ptr())
io_binding.bind_output(
name=dcu_session.get_outputs()[0].name,
device_type=outputData[dcu_session.get_outputs()[0].name].device_name(),
device_id=0,
element_type=np.float32,
shape=outputData[dcu_session.get_outputs()[0].name].shape(),
buffer_ptr=outputData[dcu_session.get_outputs()[0].name].data_ptr())
dcu_session.run_with_iobinding(io_binding)
scores=np.array(io_binding.copy_outputs_to_cpu()[0])
print("ort result.shape:",scores.shape)
return scores
def saveimage(pathOfImage,text):
iimage = cv2.imread(pathOfImage, cv2.IMREAD_COLOR)
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
font_color = (0, 0, 255)
font_thickness = 1
text_position = (5, 20)
cv2.putText(iimage, text, text_position, font, font_scale, font_color, font_thickness)
cv2.imwrite("./output_image.jpg", iimage)
cv2.destroyAllWindows()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--imgPath', type=str, default='../Resource/Images/ImageNet_01.jpg', help="image path")
parser.add_argument('--staticModelPath', type=str, default='../Resource/Models/resnet50_static.onnx', help="static onnx filepath")
args = parser.parse_args()
# 数据预处理
image = Preprocessing(args.imgPath)
# 静态推理
result = ort_seg_dcu(args.staticModelPath,image)
# 解析分类结果
postprocess(result,args.imgPath)
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment