Classifier_io_binding.py 4.52 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# -*- coding: utf-8 -*-
"""
分类器示例
"""
import cv2
import argparse
import numpy as np
import onnxruntime as ort

def Preprocessing(pathOfImage):
    # 读取图像
    image = cv2.imread(pathOfImage, cv2.IMREAD_COLOR)             
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    
    # 调整大小,使短边为256,保持长宽比
    ratio = float(256) / min(image.shape[0], image.shape[1])
    if image.shape[0] > image.shape[1]:
        new_size = [int(round(ratio * image.shape[0])), 256]
    else:
        new_size = [256, int(round(ratio * image.shape[1]))]
    image = np.array(cv2.resize(image, (new_size[1],new_size[0])))
    
    # 裁剪中心窗口为224*224
    h, w, c = image.shape
    start_x = w//2 - 224//2
    start_y = h//2 - 224//2
    image = image[start_y:start_y+224, start_x:start_x+224, :]
    
    # transpose
    image = image.transpose(2, 0, 1)
    
    # 将输入数据转换为float32
    img_data = image.astype('float32')
    
    # normalize
    mean_vec = np.array([123.675, 116.28, 103.53])
    stddev_vec = np.array([58.395, 57.12, 57.375])
    norm_img_data = np.zeros(img_data.shape).astype('float32')
    for i in range(img_data.shape[0]):
        norm_img_data[i,:,:] = (img_data[i,:,:] - mean_vec[i]) / stddev_vec[i]
    
    # 调整尺寸
    norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32')
    return norm_img_data

def postprocess(scores,pathOfImage):
    '''
    Postprocessing with mxnet gluon
    The function takes scores generated by the network and returns the class IDs in decreasing order
    of probability
    '''
    with open('../Resource/synset.txt', 'r') as f:
        labels = [l.rstrip() for l in f]
    preds = np.squeeze(scores)
    a = np.argsort(preds)[::-1]
    print('class=%s ; probability=%f' %(labels[a[0]],preds[a[0]]))

    text = 'class=%s ' % (labels[a[0]])
    saveimage(pathOfImage,text)

def ort_seg_dcu(model_path,image):
    
liucong's avatar
liucong committed
63
    provider_options=[{'device_id':'0','migraphx_fp16_enable':'true'}]
64
    dcu_session = ort.InferenceSession(model_path, providers=['MIGraphXExecutionProvider'], provider_options=provider_options)
liucong's avatar
liucong committed
65
66
67
68
69
70
    
    images = [image]
    input_nodes = dcu_session.get_inputs()
    input_names = [i_n.name for i_n in input_nodes]
    output_nodes = dcu_session.get_outputs()
    output_names = [o_n.name for o_n in output_nodes]
71

liucong's avatar
liucong committed
72
73
74
    input_dict = {}
    for i_d, i_n in zip(images, input_names):
        input_dict[i_n] = i_d
75
76
77

    io_binding = dcu_session.io_binding()

liucong's avatar
liucong committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    inputData = {}
    for key in input_dict.keys():
        inputData[key] = ort.OrtValue.ortvalue_from_numpy(input_dict[key], device_type='cuda')
        io_binding.bind_input(
            name = key,
            device_type = inputData[key].device_name(),
            device_id = 0,
            element_type = np.float32,
            shape = inputData[key].shape(),
            buffer_ptr = inputData[key].data_ptr())
        
    outputData = {}
    output_data = {}
    for index, o_n in enumerate(output_names):
        output_data[o_n] = np.empty(dcu_session.get_outputs()[index].shape).astype(np.float32)
        outputData[o_n] = ort.OrtValue.ortvalue_from_numpy(output_data[o_n], device_type='cuda')
        io_binding.bind_output(
            name = o_n,
            device_type = outputData[o_n].device_name(),
            device_id = 0,
            element_type = np.float32,
            shape = outputData[o_n].shape(),
            buffer_ptr = outputData[o_n].data_ptr())
101
102

    dcu_session.run_with_iobinding(io_binding)
liucong's avatar
liucong committed
103
104
    result = io_binding.copy_outputs_to_cpu()[0]
    scores = np.array(result)
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    print("ort result.shape:",scores.shape)

    return scores

def saveimage(pathOfImage,text):
    iimage = cv2.imread(pathOfImage, cv2.IMREAD_COLOR)
    font = cv2.FONT_HERSHEY_SIMPLEX
    font_scale = 0.5
    font_color = (0, 0, 255)  
    font_thickness = 1
    text_position = (5, 20)
    cv2.putText(iimage, text, text_position, font, font_scale, font_color, font_thickness)
    cv2.imwrite("./output_image.jpg", iimage)
    cv2.destroyAllWindows()

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--imgPath', type=str, default='../Resource/Images/ImageNet_01.jpg', help="image path")
    parser.add_argument('--staticModelPath', type=str, default='../Resource/Models/resnet50_static.onnx', help="static onnx filepath")
    args = parser.parse_args()

    # 数据预处理
    image = Preprocessing(args.imgPath)

    # 静态推理
    result = ort_seg_dcu(args.staticModelPath,image)
    
    # 解析分类结果
    postprocess(result,args.imgPath)