Classifier.cpp 4.46 KB
Newer Older
yangql's avatar
yangql committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#include <Classifier.h>
#include <Filesystem.h>
#include <SimpleLog.h>
#include <algorithm>
#include <CommonUtility.h>

namespace ortSamples
{

Classifier::Classifier()
{
}

Classifier::~Classifier()
{
    configurationFile.release();
}

ErrorCode Classifier::Initialize(InitializationParameterOfClassifier initializationParameterOfClassifier)
{
    // 读取配置文件
    std::string configFilePath=initializationParameterOfClassifier.configFilePath;
    if(Exists(configFilePath)==false)
    {
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
    {
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(stdout, "succeed to open configuration file\n");

    // 获取配置文件参数
    cv::FileNode netNode = configurationFile["Classifier"];
    std::string modelPath=(std::string)netNode["ModelPath"];

    // 初始化session
    //设置DCU
    OrtROCMProviderOptions rocm_options;
    rocm_options.device_id = 0;
    sessionOptions.AppendExecutionProvider_ROCM(rocm_options);
    
    sessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_BASIC);
    // sessionOptions.EnableProfiling("profile_prefix");

    session = new Ort::Session(env, modelPath.c_str(), sessionOptions);

    return SUCCESS;

}

ErrorCode Classifier::Classify(const std::vector<cv::Mat> &srcImages,std::vector<std::vector<ResultOfPrediction>> &predictions)
{
    if(srcImages.size()==0||srcImages[0].empty()||srcImages[0].depth()!=CV_8U)
    {
        LOG_ERROR(stdout, "image error!\n");
        return IMAGE_ERROR;
    }
    
    // 数据预处理
    std::vector<cv::Mat> image;
    for(int i =0;i<srcImages.size();++i)
    {
        //BGR转换为RGB
        cv::Mat imgRGB;
        cv::cvtColor(srcImages[i], imgRGB, cv::COLOR_BGR2RGB);

        // 调整大小,使短边为256,保持长宽比
        cv::Mat shrink;
        float ratio = (float)256 / min(imgRGB.cols, imgRGB.rows);
        if(imgRGB.rows > imgRGB.cols)
        {
            cv::resize(imgRGB, shrink, cv::Size(256, int(ratio * imgRGB.rows)), 0, 0);
        }
        else
        {
            cv::resize(imgRGB, shrink, cv::Size(int(ratio * imgRGB.cols), 256), 0, 0);
        }

        // 裁剪中心窗口为224*224
        int start_x = shrink.cols/2 - 224/2;
        int start_y = shrink.rows/2 - 224/2;
        cv::Rect rect(start_x, start_y, 224, 224);
        cv::Mat images = shrink(rect);
        image.push_back(images);
    }

    // normalize并转换为NCHW
    cv::Mat inputBlob;
    Image2BlobParams image2BlobParams;
    image2BlobParams.scalefactor=cv::Scalar(1/58.395, 1/57.12, 1/57.375);
    image2BlobParams.mean=cv::Scalar(123.675, 116.28, 103.53);
    image2BlobParams.swapRB=false;
    blobFromImagesWithParams(image,inputBlob,image2BlobParams);

    // 设置onnx的输入和输出名
    std::vector<const char*> input_node_names = {"data"};
    std::vector<const char*> output_node_names = {"resnetv24_dense0_fwd"};

    // 初始化输入数据
    std::array<int64_t, 4> inputShape{1, 3, 224, 224};
    auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
    std::array<float, 3 * 224 * 224> input_image{};
    float* input_test = (float*)inputBlob.data;
    Ort::Value inputTensor = Ort::Value::CreateTensor<float>(memoryInfo, input_test, input_image.size(), inputShape.data(), inputShape.size());
    std::vector<Ort::Value> intput_tensors;
    intput_tensors.push_back(std::move(inputTensor));
    
    // 进行推理
    auto output_tensors = session->Run(Ort::RunOptions{nullptr}, input_node_names.data(), intput_tensors.data(), 1, output_node_names.data(), 1);
    
    // 解析输出结果
    const float* pdata = output_tensors[0].GetTensorMutableData<float>();
    int numberOfClasses = 1000 ;
    for(int i=0;i<srcImages.size();++i)
    {
        int startIndex=numberOfClasses*i;

        std::vector<float> logit;
        for(int j=0;j<numberOfClasses;++j)
        {
            logit.push_back(pdata[startIndex+j]);
        }
        
        std::vector<ResultOfPrediction> resultOfPredictions;
        for(int j=0;j<numberOfClasses;++j)
        {
            ResultOfPrediction prediction;
            prediction.label=j;
            prediction.confidence=logit[j];

            resultOfPredictions.push_back(prediction);
        }

        predictions.push_back(resultOfPredictions);
    }
    return SUCCESS;
}
}