train.py 11.9 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import os
import sys

sys.path.append(
    os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))
)

import numpy as np
import time

import oneflow as flow
from oneflow.nn.parallel import DistributedDataParallel as ddp

from config import get_args
from graph import make_train_graph, make_eval_graph
from models.resnet50 import resnet50, Bottleneck
from models.data import make_data_loader
from models.optimizer import make_optimizer
from models.optimizer import make_lr_scheduler
from models.optimizer import make_cross_entropy
from models.accuracy import Accuracy
import utils.logger as log
from utils.stat import CudaUtilMemStat


class Trainer(object):
    def __init__(self):
        args = get_args()
        for k, v in args.__dict__.items():
            setattr(self, k, v)

        self.rank = flow.env.get_rank()
        self.world_size = flow.env.get_world_size()

        self.cur_epoch = 0
        self.cur_iter = 0
        self.cur_batch = 0
        self.is_global = (self.world_size > 1 and not self.ddp) or self.graph
        self.is_train = False
        self.meter_lr = self.graph is False

        self.init_logger()

        flow.boxing.nccl.set_fusion_threshold_mbytes(self.nccl_fusion_threshold_mb)
        flow.boxing.nccl.set_fusion_max_ops_num(self.nccl_fusion_max_ops)
        if self.use_fp16 and self.num_nodes * self.num_devices_per_node > 1:
            flow.boxing.nccl.enable_use_buffer_to_fuse_all_reduce(False)

        self.model = resnet50(
            zero_init_residual=self.zero_init_residual,
            fuse_bn_relu=self.fuse_bn_relu,
            fuse_bn_add_relu=self.fuse_bn_add_relu,
            channel_last=self.channel_last,
        )
        self.init_model()
        self.cross_entropy = make_cross_entropy(args)

        self.train_data_loader = make_data_loader(
            args, "train", self.is_global, self.synthetic_data
        )
        self.val_data_loader = make_data_loader(
            args, "validation", self.is_global, self.synthetic_data
        )

        self.optimizer = make_optimizer(args, self.model)
        self.lr_scheduler = make_lr_scheduler(args, self.optimizer)
        self.acc = Accuracy()

        if self.graph:
            self.train_graph = make_train_graph(
                self.model,
                self.cross_entropy,
                self.train_data_loader,
                self.optimizer,
                self.lr_scheduler,
                return_pred_and_label=self.metric_train_acc,
            )
            self.eval_graph = make_eval_graph(self.model, self.val_data_loader)

        if self.gpu_stat_file is not None:
            self.gpu_stat = CudaUtilMemStat(
                f"rank{self.rank}_" + self.gpu_stat_file, only_ordinal=self.rank
            )
        else:
            self.gpu_stat = None

    def init_model(self):
        self.logger.print("***** Model Init *****", print_ranks=[0])
        start_t = time.perf_counter()

        if self.is_global:
            placement = flow.env.all_device_placement("cuda")
            self.model = self.model.to_global(
                placement=placement, sbp=flow.sbp.broadcast
            )
        else:
            self.model = self.model.to("cuda")

        if self.load_path is None:
            self.legacy_init_parameters()
        else:
            self.load_state_dict()

        if self.ddp:
            self.model = ddp(self.model)

        if self.save_init:
            self.save("init")

        end_t = time.perf_counter()
        self.logger.print(
            f"***** Model Init Finish, time escapled: {end_t - start_t:.5f} s *****",
            print_ranks=[0],
        )

    def legacy_init_parameters(self):
        if not self.legacy_init:
            return

        for m in self.model.modules():
            # NOTE(zwx): legacy BatchNorm initializer in Benchmark seems wrong, so don't follow it
            if isinstance(m, flow.nn.Conv2d):
                flow.nn.init.kaiming_normal_(
                    m.weight, mode="fan_in", nonlinearity="relu"
                )
            elif isinstance(m, flow.nn.Linear):
                flow.nn.init.kaiming_normal_(
                    m.weight, mode="fan_in", nonlinearity="relu"
                )
                flow.nn.init.constant_(m.bias, 0)
            elif isinstance(m, flow.nn.BatchNorm2d):
                flow.nn.init.constant_(m.weight, 1)
                flow.nn.init.constant_(m.bias, 0)

        for m in self.model.modules():
            if isinstance(m, Bottleneck):
                flow.nn.init.constant_(m.bn3.weight, 0)

    def load_state_dict(self):
        self.logger.print(f"Loading model from {self.load_path}", print_ranks=[0])
        if self.is_global:
            state_dict = flow.load(self.load_path, global_src_rank=0)
        elif self.rank == 0:
            state_dict = flow.load(self.load_path)
        else:
            return

        self.model.load_state_dict(state_dict)

    def init_logger(self):
        if self.metric_local:
            print_ranks = list(range(self.world_size))
        else:
            print_ranks = [0]

        self.logger = log.get_logger(self.rank, print_ranks)
        self.logger.register_metric("job", log.IterationMeter(), "[{}]")
        self.logger.register_metric("epoch", log.IterationMeter(), "epoch: {}/{}")
        self.logger.register_metric("iter", log.IterationMeter(), "iter: {}/{}")
        self.logger.register_metric("loss", log.AverageMeter(), "loss: {:.5f}", True)
        if self.meter_lr:
            self.logger.register_metric("lr", log.IterationMeter(), "lr: {:.6f}")
        self.logger.register_metric("top1", log.AverageMeter(), "top1: {:.5f}", True)
        time_meter_str = (
            "throughput: {:.2f}, timestamp: {:.6f}"
            if self.print_timestamp
            else "throughput: {:.2f}"
        )
        self.logger.register_metric(
            "time", log.TimeMeter(self.print_timestamp), time_meter_str, True
        )

    def meter(
        self,
        epoch_pg=None,
        iter_pg=None,
        loss=None,
        lr=None,
        top1=None,
        num_samples=1,
        do_print=False,
    ):
        self.logger.meter("job", "train" if self.is_train else "eval")
        self.logger.meter("epoch", epoch_pg or (self.cur_epoch, self.num_epochs))
        self.logger.meter("iter", iter_pg or (self.cur_iter, self.batches_per_epoch))
        if loss is not None:
            self.logger.meter("loss", loss)

        if lr is not None and self.meter_lr:
            self.logger.meter("lr", lr)

        if top1 is not None:
            self.logger.meter("top1", top1)

        self.logger.meter("time", num_samples)

        if do_print:
            self.logger.print_metrics()
            if self.gpu_stat is not None:
                self.gpu_stat.stat()

    def meter_train_iter(self, loss, top1):
        assert self.is_train is True
        lr = None
        if self.meter_lr:
            lr = self.optimizer.param_groups[0]["lr"]

        do_print = (
            self.cur_iter % self.print_interval == 0
            or self.cur_iter == self.batches_per_epoch
        )
        self.meter(
            loss=loss,
            lr=lr,
            top1=top1,
            num_samples=self.train_batch_size,
            do_print=do_print,
        )

    def __call__(self):
        self.train()

    def train(self):
        self.logger.metric("time").reset()
        for _ in range(self.num_epochs):
            self.train_one_epoch()
            if self.cur_batch == self.total_batches:
                break

            if not self.skip_eval:
                acc = self.eval()
            else:
                acc = 0

            #save_dir = f"epoch_{self.cur_epoch}_val_acc_{acc}"
            #self.save(save_dir)
            self.cur_epoch += 1
            self.cur_iter = 0

    def train_one_epoch(self):
        self.model.train()
        self.is_train = True

        for _ in range(self.batches_per_epoch):
            if self.graph:
                loss, pred, label = self.train_graph()
            else:
                loss, pred, label = self.train_eager()

            self.cur_iter += 1

            loss = tol(loss, self.metric_local)
            if pred is not None and label is not None:
                pred = tol(pred, self.metric_local)
                label = tol(label, self.metric_local)
                top1_acc = self.acc([pred], [label])
            else:
                top1_acc = 0

            self.meter_train_iter(loss, top1_acc)            

            self.cur_batch += 1
            if self.cur_batch == self.total_batches:
                break

    def train_eager(self):
        loss, pred, label = self.forward()

        if loss.is_global and self.scale_grad:
            # NOTE(zwx): scale init grad with world_size
            # because global_tensor.mean() include dividor numel * world_size
            loss = loss / self.world_size
            loss.backward()
            for param_group in self.optimizer.param_groups:
                for param in param_group.parameters:
                    param.grad /= self.world_size
        else:
            loss.backward()
            loss = loss / self.world_size

        self.optimizer.step()
        self.optimizer.zero_grad()
        if self.lr_scheduler:
            self.lr_scheduler.step()

        return loss, pred, label

    def eval(self):
        self.model.eval()
        self.is_train = False

        preds, labels = [], []
        for _ in range(self.val_batches_per_epoch):
            if self.graph:
                pred, label = self.eval_graph()
            else:
                pred, label = self.inference()

            preds.append(tton(pred, self.metric_local))
            labels.append(tton(label, self.metric_local))

        top1_acc = calc_acc(preds, labels)
        self.meter(
            iter_pg=(self.val_batches_per_epoch, self.val_batches_per_epoch),
            loss=0.0,
            top1=top1_acc,
            num_samples=self.val_batch_size * self.val_batches_per_epoch,
            do_print=True,
        )
        return top1_acc

    def forward(self):
        image, label = self.train_data_loader()
        image = image.to("cuda")
        label = label.to("cuda")
        logits = self.model(image)
        loss = self.cross_entropy(logits, label)
        if self.metric_train_acc:
            pred = logits.softmax()
            return loss, pred, label
        else:
            return loss, None, None

    def inference(self):
        image, label = self.val_data_loader()
        image = image.to("cuda")
        label = label.to("cuda")
        with flow.no_grad():
            logits = self.model(image)
            pred = logits.softmax()

        return pred, label

    def save(self, subdir):
        if self.save_path is None:
            return

        save_path = os.path.join(self.save_path, subdir)
        self.logger.print(f"Saving model to {save_path}", print_ranks=[0])
        state_dict = self.model.state_dict()

        if self.is_global:
            flow.save(state_dict, save_path, global_dst_rank=0)
        elif self.rank == 0:
            flow.save(state_dict, save_path)
        else:
            return


def tol(tensor, pure_local=True):
    """ to local """
    if tensor.is_global:
        if pure_local:
            tensor = tensor.to_local()
        else:
            tensor = tensor.to_global(sbp=flow.sbp.broadcast).to_local()

    return tensor


def tton(tensor, local_only=True):
    """ tensor to numpy """
    if tensor.is_global:
        if local_only:
            tensor = tensor.to_local().numpy()
        else:
            tensor = tensor.to_global(sbp=flow.sbp.broadcast).to_local().numpy()
    else:
        tensor = tensor.numpy()

    return tensor


def calc_acc(preds, labels):
    correct_of = 0.0
    num_samples = 0
    for pred, label in zip(preds, labels):
        clsidxs = np.argmax(pred, axis=1)
        correct_of += (clsidxs == label).sum()
        num_samples += label.size

    top1_acc = correct_of / num_samples
    return top1_acc


if __name__ == "__main__":
    trainer = Trainer()
    trainer()