data.py 7.31 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
import numpy as np
import oneflow as flow


def make_data_loader(args, mode, is_global=False, synthetic=False):
    assert mode in ("train", "validation")

    if mode == "train":
        total_batch_size = args.train_global_batch_size
        batch_size = args.train_batch_size
        num_samples = args.samples_per_epoch
    else:
        total_batch_size = args.val_global_batch_size
        batch_size = args.val_batch_size
        num_samples = args.val_samples_per_epoch

    placement = None
    sbp = None

    if is_global:
        placement = flow.env.all_device_placement("cpu")
        sbp = flow.sbp.split(0)
        # NOTE(zwx): global view, only consider logical batch size
        batch_size = total_batch_size

    if synthetic:
        data_loader = SyntheticDataLoader(
            batch_size=batch_size,
            num_classes=args.num_classes,
            placement=placement,
            sbp=sbp,
            channel_last=args.channel_last,
        )
        return data_loader.to("cuda")

    ofrecord_data_loader = OFRecordDataLoader(
        ofrecord_dir=args.ofrecord_path,
        ofrecord_part_num=args.ofrecord_part_num,
        dataset_size=num_samples,
        mode=mode,
        batch_size=batch_size,
        total_batch_size=total_batch_size,
        channel_last=args.channel_last,
        placement=placement,
        sbp=sbp,
        use_gpu_decode=args.use_gpu_decode,
    )
    return ofrecord_data_loader


class OFRecordDataLoader(flow.nn.Module):
    def __init__(
        self,
        ofrecord_dir="./ofrecord",
        ofrecord_part_num=1,
        dataset_size=9469,
        mode="train",
        batch_size=1,
        total_batch_size=1,
        channel_last=False,
        placement=None,
        sbp=None,
        use_gpu_decode=False,
    ):
        super().__init__()

        assert mode in ("train", "validation")

        self.batch_size = batch_size
        self.total_batch_size = total_batch_size
        self.dataset_size = dataset_size
        self.mode = mode

        random_shuffle = True if mode == "train" else False
        shuffle_after_epoch = True if mode == "train" else False

        ofrecord_path = os.path.join(ofrecord_dir, self.mode)

        self.ofrecord_reader = flow.nn.OfrecordReader(
            ofrecord_path,
            batch_size=batch_size,
            data_part_num=ofrecord_part_num,
            part_name_suffix_length=5,
            random_shuffle=random_shuffle,
            shuffle_after_epoch=shuffle_after_epoch,
            placement=placement,
            sbp=sbp,
        )

        self.label_decoder = flow.nn.OfrecordRawDecoder(
            "class/label", shape=tuple(), dtype=flow.int32
        )

        if channel_last:
            os.environ["ONEFLOW_ENABLE_NHWC"] = "1"
        color_space = "RGB"
        image_height = 224
        image_width = 224
        resize_shorter = 256
        rgb_mean = [123.68, 116.779, 103.939]
        rgb_std = [58.393, 57.12, 57.375]

        self.use_gpu_decode = use_gpu_decode
        if self.mode == "train":
            if self.use_gpu_decode:
                self.bytesdecoder_img = flow.nn.OFRecordBytesDecoder("encoded")
                self.image_decoder = flow.nn.OFRecordImageGpuDecoderRandomCropResize(
                    target_width=image_width,
                    target_height=image_height,
                    num_workers=3,
                    warmup_size=2048,
                )
            else:
                self.image_decoder = flow.nn.OFRecordImageDecoderRandomCrop(
                    "encoded", color_space=color_space
                )
                self.resize = flow.nn.image.Resize(
                    target_size=[image_width, image_height]
                )
            self.flip = flow.nn.CoinFlip(
                batch_size=self.batch_size, placement=placement, sbp=sbp
            )
            self.crop_mirror_norm = flow.nn.CropMirrorNormalize(
                color_space=color_space,
                mean=rgb_mean,
                std=rgb_std,
                output_dtype=flow.float,
            )
        else:
            self.image_decoder = flow.nn.OFRecordImageDecoder(
                "encoded", color_space=color_space
            )
            self.resize = flow.nn.image.Resize(
                resize_side="shorter",
                keep_aspect_ratio=True,
                target_size=resize_shorter,
            )
            self.crop_mirror_norm = flow.nn.CropMirrorNormalize(
                color_space=color_space,
                crop_h=image_height,
                crop_w=image_width,
                crop_pos_y=0.5,
                crop_pos_x=0.5,
                mean=rgb_mean,
                std=rgb_std,
                output_dtype=flow.float,
            )

    def __len__(self):
        return self.dataset_size // self.total_batch_size

    def forward(self):
        if self.mode == "train":
            record = self.ofrecord_reader()
            if self.use_gpu_decode:
                encoded = self.bytesdecoder_img(record)
                image = self.image_decoder(encoded)
            else:
                image_raw_bytes = self.image_decoder(record)
                image = self.resize(image_raw_bytes)[0]
                image = image.to("cuda")

            label = self.label_decoder(record)
            flip_code = self.flip()
            flip_code = flip_code.to("cuda")
            image = self.crop_mirror_norm(image, flip_code)
        else:
            record = self.ofrecord_reader()
            image_raw_bytes = self.image_decoder(record)
            label = self.label_decoder(record)
            image = self.resize(image_raw_bytes)[0]
            image = self.crop_mirror_norm(image)

        return image, label


class SyntheticDataLoader(flow.nn.Module):
    def __init__(
        self,
        batch_size,
        image_size=224,
        num_classes=1000,
        placement=None,
        sbp=None,
        channel_last=False,
    ):
        super().__init__()

        if channel_last:
            self.image_shape = (batch_size, image_size, image_size, 3)
        else:
            self.image_shape = (batch_size, 3, image_size, image_size)
        self.label_shape = (batch_size,)
        self.num_classes = num_classes
        self.placement = placement
        self.sbp = sbp

        if self.placement is not None and self.sbp is not None:
            self.image = flow.nn.Parameter(
                flow.randint(
                    0,
                    high=256,
                    size=self.image_shape,
                    dtype=flow.float32,
                    placement=self.placement,
                    sbp=self.sbp,
                ),
                requires_grad=False,
            )
            self.label = flow.nn.Parameter(
                flow.randint(
                    0,
                    high=self.num_classes,
                    size=self.label_shape,
                    placement=self.placement,
                    sbp=self.sbp,
                ).to(dtype=flow.int32),
                requires_grad=False,
            )
        else:
            self.image = flow.randint(
                0, high=256, size=self.image_shape, dtype=flow.float32, device="cuda"
            )
            self.label = flow.randint(
                0, high=self.num_classes, size=self.label_shape, device="cuda",
            ).to(dtype=flow.int32)

    def forward(self):
        return self.image, self.label