resnet50.cpp 6.11 KB
Newer Older
liucong's avatar
liucong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <resnet50.h>
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/quantization.hpp>
#include <opencv2/dnn.hpp>
#include <CommonUtility.h>
#include <Filesystem.h>
#include <SimpleLog.h>

namespace migraphxSamples
{

Classifier::Classifier()
{
}

Classifier::~Classifier()
{
    configurationFile.release();
}

ErrorCode Classifier::Initialize(InitializationParameterOfClassifier initializationParameterOfClassifier)
{
    // 读取配置文件
    std::string configFilePath=CONFIG_FILE;
    if(Exists(configFilePath)==false)
    {
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
    if(!configurationFile.open(configFilePath, FileStorage::READ))
    {
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(stdout, "succeed to open configuration file\n");

    // 获取配置文件参数
    FileNode netNode = configurationFile["Classifier"];
liucong's avatar
liucong committed
40
    std::string modelPath=(std::string)netNode["ModelPath"];
liucong's avatar
liucong committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    scale=(float)netNode["Scale"];
    meanValue.val[0]=(float)netNode["MeanValue1"];
    meanValue.val[1]=(float)netNode["MeanValue2"];
    meanValue.val[2]=(float)netNode["MeanValue3"];
    swapRB=(bool)(int)netNode["SwapRB"];
    crop=(bool)(int)netNode["Crop"];
    useInt8=(bool)(int)netNode["UseInt8"];
    useFP16=(bool)(int)netNode["UseFP16"];

    // 加载模型
    if(Exists(modelPath)==false)
    {
        LOG_ERROR(logFile,"%s not exist!\n",modelPath.c_str());
        return MODEL_NOT_EXIST;
    }
    net = migraphx::parse_onnx(modelPath);
    LOG_INFO(logFile,"succeed to load model: %s\n",GetFileName(modelPath).c_str());

    // 获取模型输入属性
    std::unordered_map<std::string, migraphx::shape> inputMap=net.get_parameter_shapes();
    inputName=inputMap.begin()->first;
    inputShape=inputMap.begin()->second;
    int N=inputShape.lens()[0];
    int C=inputShape.lens()[1];
    int H=inputShape.lens()[2];
    int W=inputShape.lens()[3];
    inputSize=cv::Size(W,H);

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 量化
    if(useInt8)
    {
        // 创建量化校准数据,建议使用测试集中的多张典型图像
        cv::Mat srcImage=cv::imread("../Resource/Images/ImageNet_01.jpg",1);
        std::vector<cv::Mat> srcImages;
        for(int i=0;i<inputShape.lens()[0];++i)
        {
            srcImages.push_back(srcImage);
        }
        cv::Mat inputBlob;
        cv::dnn::blobFromImages(srcImages,
                        inputBlob,
                        scale,
                        inputSize,
                        meanValue,
                        swapRB,
                        false);
        std::unordered_map<std::string, migraphx::argument> inputData;
        inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};
        std::vector<std::unordered_map<std::string, migraphx::argument>> calibrationData = {inputData};

        // INT8量化
        migraphx::quantize_int8(net, gpuTarget, calibrationData);
    }
    if(useFP16)
    {
        migraphx::quantize_fp16(net);
    }

    // 编译模型
    migraphx::compile_options options;
    options.device_id=0;                // 设置GPU设备,默认为0号设备
    options.offload_copy=true; 
    net.compile(gpuTarget,options);
    LOG_INFO(logFile,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());

    std::unordered_map<std::string, migraphx::argument> inputData;
    inputData[inputName]=migraphx::argument{inputShape};
    net.eval(inputData);

    // log
    LOG_INFO(logFile,"InputSize:%dx%d\n",inputSize.width,inputSize.height);
    LOG_INFO(logFile,"InputName:%s\n",inputName.c_str());
    LOG_INFO(logFile,"Scale:%.6f\n",scale);
    LOG_INFO(logFile,"Mean:%.2f,%.2f,%.2f\n",meanValue.val[0],meanValue.val[1],meanValue.val[2]);
    LOG_INFO(logFile,"SwapRB:%d\n",(int)swapRB);
    LOG_INFO(logFile,"Crop:%d\n",(int)crop);
    LOG_INFO(logFile,"UseInt8:%d\n",(int)useInt8);
    LOG_INFO(logFile,"UseFP16:%d\n",(int)useFP16);
    
    return SUCCESS;

}

ErrorCode Classifier::Classify(const std::vector<cv::Mat> &srcImages,std::vector<std::vector<ResultOfPrediction>> &predictions)
{
    if(srcImages.size()==0||srcImages[0].empty()||srcImages[0].depth()!=CV_8U)
    {
        LOG_ERROR(logFile, "image error!\n");
        return IMAGE_ERROR;
    }
    
    // 预处理并转换为NCHW
    cv::Mat inputBlob;
    cv::dnn::blobFromImages(srcImages,
                    inputBlob,
                    scale,
                    inputSize,
                    meanValue,
                    swapRB,
                    false);

    // 输入数据
    std::unordered_map<std::string, migraphx::argument> inputData;
    inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};

    // 推理
    std::vector<migraphx::argument> results = net.eval(inputData);

    // 获取输出节点的属性
    migraphx::argument result  = results[0];                // 获取第一个输出节点的数据
    migraphx::shape outputShape=result.get_shape();         // 输出节点的shape
    std::vector<std::size_t> outputSize=outputShape.lens(); // 每一维大小,维度顺序为(N,C,H,W) 
    int numberOfOutput=outputShape.elements();              // 输出节点元素的个数
    float *logits=(float *)result.data();                   // 输出节点数据指针

    // 获取每张图像的预测结果
    int numberOfClasses=numberOfOutput/srcImages.size();
    for(int i=0;i<srcImages.size();++i)
    {
        int startIndex=numberOfClasses*i;

        // 获取每幅图像对应的输出
        std::vector<float> logit;
        for(int j=0;j<numberOfClasses;++j)
        {
            logit.push_back(logits[startIndex+j]);
        }
        
        std::vector<ResultOfPrediction> resultOfPredictions;
        for(int j=0;j<numberOfClasses;++j)
        {
            ResultOfPrediction prediction;
            prediction.label=j;
            prediction.confidence=logit[j];

            resultOfPredictions.push_back(prediction);
        }

        predictions.push_back(resultOfPredictions);
    }

    return SUCCESS;

}

}