Commit 3158fd2c authored by laibao's avatar laibao
Browse files

更新README.md,修改Docker镜像版本,调整环境变量格式,优化基准测试脚本,添加新的基准测试功能,删除不再使用的示例文件。

parent d8977d01
......@@ -67,19 +67,19 @@ conda create -n qwen3_vllm python=3.10
* vllm: 0.9.2
* python: python3.10
`Tips:需先安装相关依赖,最后安装vllm包`
`Tips:需先安装相关依赖,最后安装vllm包`
环境变量:
环境变量:
export ALLREDUCE_STREAM_WITH_COMPUTE=1 
export VLLM_NUMA_BIND=1
export VLLM_RANK0_NUMA=0
export VLLM_RANK1_NUMA=1
export VLLM_RANK2_NUMA=2
export VLLM_RANK3_NUMA=3
export VLLM_RANK4_NUMA=4
export VLLM_RANK5_NUMA=5
export VLLM_RANK6_NUMA=6
export VLLM_RANK7_NUMA=7
export VLLM_NUMA_BIND=1
export VLLM_RANK0_NUMA=0
export VLLM_RANK1_NUMA=1
export VLLM_RANK2_NUMA=2
export VLLM_RANK3_NUMA=3
export VLLM_RANK4_NUMA=4
export VLLM_RANK5_NUMA=5
export VLLM_RANK6_NUMA=6
export VLLM_RANK7_NUMA=7
## 数据集
......@@ -89,17 +89,16 @@ export VLLM_RANK7_NUMA=7
### 模型下载
| 基座模型 |
| -------------------------------------------------------------------------------- |
| [Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) |
| [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) |
| [Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B) |
| [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) |
| [Qwen3-14B](https://huggingface.co/Qwen/Qwen3-14B) |
| [Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B) |
| [Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) |
| [Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B) |
| 基座模型 |
| ----------------------------------------------------------- |
| [Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) |
| [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) |
| [Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B) |
| [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) |
| [Qwen3-14B](https://huggingface.co/Qwen/Qwen3-14B) |
| [Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B) |
| [Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) |
| [Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B) |
### 离线批量推理
......
# Benchmarking vLLM
## Downloading the ShareGPT dataset
This README guides you through running benchmark tests with the extensive
datasets supported on vLLM. It’s a living document, updated as new features and datasets
become available.
**Dataset Overview**
<table style="width:100%; border-collapse: collapse;">
<thead>
<tr>
<th style="width:15%; text-align: left;">Dataset</th>
<th style="width:10%; text-align: center;">Online</th>
<th style="width:10%; text-align: center;">Offline</th>
<th style="width:65%; text-align: left;">Data Path</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ShareGPT</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json</code></td>
</tr>
<tr>
<td><strong>BurstGPT</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv</code></td>
</tr>
<tr>
<td><strong>Sonnet</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td>Local file: <code>benchmarks/sonnet.txt</code></td>
</tr>
<tr>
<td><strong>Random</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>synthetic</code></td>
</tr>
<tr>
<td><strong>HuggingFace-VisionArena</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>lmarena-ai/VisionArena-Chat</code></td>
</tr>
<tr>
<td><strong>HuggingFace-InstructCoder</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>likaixin/InstructCoder</code></td>
</tr>
<tr>
<td><strong>HuggingFace-AIMO</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>AI-MO/aimo-validation-aime</code> , <code>AI-MO/NuminaMath-1.5</code>, <code>AI-MO/NuminaMath-CoT</code></td>
</tr>
<tr>
<td><strong>HuggingFace-Other</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>lmms-lab/LLaVA-OneVision-Data</code>, <code>Aeala/ShareGPT_Vicuna_unfiltered</code></td>
</tr>
<tr>
<td><strong>Custom</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td>Local file: <code>data.jsonl</code></td>
</tr>
</tbody>
</table>
✅: supported
🟡: Partial support
🚧: to be supported
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`
---
<details>
<summary><b>🚀 Example - Online Benchmark</b></summary>
<br/>
First start serving your model
```bash
vllm serve NousResearch/Hermes-3-Llama-3.1-8B --disable-log-requests
```
Then run the benchmarking script
```bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python3 vllm/benchmarks/benchmark_serving.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--endpoint /v1/completions \
--dataset-name sharegpt \
--dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
--num-prompts 10
```
If successful, you will see the following output
```
============ Serving Benchmark Result ============
Successful requests: 10
Benchmark duration (s): 5.78
Total input tokens: 1369
Total generated tokens: 2212
Request throughput (req/s): 1.73
Output token throughput (tok/s): 382.89
Total Token throughput (tok/s): 619.85
---------------Time to First Token----------------
Mean TTFT (ms): 71.54
Median TTFT (ms): 73.88
P99 TTFT (ms): 79.49
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms): 7.91
Median TPOT (ms): 7.96
P99 TPOT (ms): 8.03
---------------Inter-token Latency----------------
Mean ITL (ms): 7.74
Median ITL (ms): 7.70
P99 ITL (ms): 8.39
==================================================
```
**Custom Dataset**
If the dataset you want to benchmark is not supported yet in vLLM, even then you can benchmark on it using `CustomDataset`. Your data needs to be in `.jsonl` format and needs to have "prompt" field per entry, e.g., data.jsonl
```
{"prompt": "What is the capital of India?"}
{"prompt": "What is the capital of Iran?"}
{"prompt": "What is the capital of China?"}
```
```bash
# start server
VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.1-8B-Instruct --disable-log-requests
```
```bash
# run benchmarking script
python3 benchmarks/benchmark_serving.py --port 9001 --save-result --save-detailed \
--backend vllm \
--model meta-llama/Llama-3.1-8B-Instruct \
--endpoint /v1/completions \
--dataset-name custom \
--dataset-path <path-to-your-data-jsonl> \
--custom-skip-chat-template \
--num-prompts 80 \
--max-concurrency 1 \
--temperature=0.3 \
--top-p=0.75 \
--result-dir "./log/"
```
You can skip applying chat template if your data already has it by using `--custom-skip-chat-template`.
**VisionArena Benchmark for Vision Language Models**
```bash
# need a model with vision capability here
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
```
```bash
python3 vllm/benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
--dataset-name hf \
--dataset-path lmarena-ai/VisionArena-Chat \
--hf-split train \
--num-prompts 1000
```
**InstructCoder Benchmark with Speculative Decoding**
``` bash
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
--speculative-config $'{"method": "ngram",
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
"prompt_lookup_min": 2}'
```
``` bash
python3 benchmarks/benchmark_serving.py \
--model meta-llama/Meta-Llama-3-8B-Instruct \
--dataset-name hf \
--dataset-path likaixin/InstructCoder \
--num-prompts 2048
```
**Other HuggingFaceDataset Examples**
You can download the dataset by running:
```bash
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
```
**`lmms-lab/LLaVA-OneVision-Data`**
```bash
python3 vllm/benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
--dataset-name hf \
--dataset-path lmms-lab/LLaVA-OneVision-Data \
--hf-split train \
--hf-subset "chart2text(cauldron)" \
--num-prompts 10
```
**`Aeala/ShareGPT_Vicuna_unfiltered`**
```bash
python3 vllm/benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
--dataset-name hf \
--dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
--hf-split train \
--num-prompts 10
```
**`AI-MO/aimo-validation-aime`**
``` bash
python3 vllm/benchmarks/benchmark_serving.py \
--model Qwen/QwQ-32B \
--dataset-name hf \
--dataset-path AI-MO/aimo-validation-aime \
--num-prompts 10 \
--seed 42
```
**`philschmid/mt-bench`**
``` bash
python3 vllm/benchmarks/benchmark_serving.py \
--model Qwen/QwQ-32B \
--dataset-name hf \
--dataset-path philschmid/mt-bench \
--num-prompts 80
```
**Running With Sampling Parameters**
When using OpenAI-compatible backends such as `vllm`, optional sampling
parameters can be specified. Example client command:
```bash
python3 vllm/benchmarks/benchmark_serving.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--endpoint /v1/completions \
--dataset-name sharegpt \
--dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
--top-k 10 \
--top-p 0.9 \
--temperature 0.5 \
--num-prompts 10
```
**Running With Ramp-Up Request Rate**
The benchmark tool also supports ramping up the request rate over the
duration of the benchmark run. This can be useful for stress testing the
server or finding the maximum throughput that it can handle, given some latency budget.
Two ramp-up strategies are supported:
- `linear`: Increases the request rate linearly from a start value to an end value.
- `exponential`: Increases the request rate exponentially.
The following arguments can be used to control the ramp-up:
- `--ramp-up-strategy`: The ramp-up strategy to use (`linear` or `exponential`).
- `--ramp-up-start-rps`: The request rate at the beginning of the benchmark.
- `--ramp-up-end-rps`: The request rate at the end of the benchmark.
</details>
<details>
<summary><b>📈 Example - Offline Throughput Benchmark</b></summary>
<br/>
```bash
python3 vllm/benchmarks/benchmark_throughput.py \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset-name sonnet \
--dataset-path vllm/benchmarks/sonnet.txt \
--num-prompts 10
```
If successful, you will see the following output
```
Throughput: 7.15 requests/s, 4656.00 total tokens/s, 1072.15 output tokens/s
Total num prompt tokens: 5014
Total num output tokens: 1500
```
**VisionArena Benchmark for Vision Language Models**
``` bash
python3 vllm/benchmarks/benchmark_throughput.py \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
--dataset-path lmarena-ai/VisionArena-Chat \
--num-prompts 1000 \
--hf-split train
```
The `num prompt tokens` now includes image token counts
```
Throughput: 2.55 requests/s, 4036.92 total tokens/s, 326.90 output tokens/s
Total num prompt tokens: 14527
Total num output tokens: 1280
```
**InstructCoder Benchmark with Speculative Decoding**
``` bash
VLLM_WORKER_MULTIPROC_METHOD=spawn \
VLLM_USE_V1=1 \
python3 vllm/benchmarks/benchmark_throughput.py \
--dataset-name=hf \
--dataset-path=likaixin/InstructCoder \
--model=meta-llama/Meta-Llama-3-8B-Instruct \
--input-len=1000 \
--output-len=100 \
--num-prompts=2048 \
--async-engine \
--speculative-config $'{"method": "ngram",
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
"prompt_lookup_min": 2}'
```
```
Throughput: 104.77 requests/s, 23836.22 total tokens/s, 10477.10 output tokens/s
Total num prompt tokens: 261136
Total num output tokens: 204800
```
**Other HuggingFaceDataset Examples**
**`lmms-lab/LLaVA-OneVision-Data`**
```bash
python3 vllm/benchmarks/benchmark_throughput.py \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
--dataset-path lmms-lab/LLaVA-OneVision-Data \
--hf-split train \
--hf-subset "chart2text(cauldron)" \
--num-prompts 10
```
**`Aeala/ShareGPT_Vicuna_unfiltered`**
```bash
python3 vllm/benchmarks/benchmark_throughput.py \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
--dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
--hf-split train \
--num-prompts 10
```
**`AI-MO/aimo-validation-aime`**
```bash
python3 benchmarks/benchmark_throughput.py \
--model Qwen/QwQ-32B \
--backend vllm \
--dataset-name hf \
--dataset-path AI-MO/aimo-validation-aime \
--hf-split train \
--num-prompts 10
```
**Benchmark with LoRA Adapters**
``` bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python3 vllm/benchmarks/benchmark_throughput.py \
--model meta-llama/Llama-2-7b-hf \
--backend vllm \
--dataset_path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
--dataset_name sharegpt \
--num-prompts 10 \
--max-loras 2 \
--max-lora-rank 8 \
--enable-lora \
--lora-path yard1/llama-2-7b-sql-lora-test
```
</details>
<details>
<summary><b>🛠️ Example - Structured Output Benchmark</b></summary>
<br/>
Benchmark the performance of structured output generation (JSON, grammar, regex).
**Server Setup**
```bash
vllm serve NousResearch/Hermes-3-Llama-3.1-8B --disable-log-requests
```
**JSON Schema Benchmark**
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset json \
--structured-output-ratio 1.0 \
--request-rate 10 \
--num-prompts 1000
```
**Grammar-based Generation Benchmark**
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset grammar \
--structure-type grammar \
--request-rate 10 \
--num-prompts 1000
```
**Regex-based Generation Benchmark**
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset regex \
--request-rate 10 \
--num-prompts 1000
```
**Choice-based Generation Benchmark**
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset choice \
--request-rate 10 \
--num-prompts 1000
```
**XGrammar Benchmark Dataset**
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset xgrammar_bench \
--request-rate 10 \
--num-prompts 1000
```
</details>
<details>
<summary><b>📚 Example - Long Document QA Benchmark</b></summary>
<br/>
Benchmark the performance of long document question-answering with prefix caching.
**Basic Long Document QA Test**
```bash
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 16 \
--document-length 2000 \
--output-len 50 \
--repeat-count 5
```
**Different Repeat Modes**
```bash
# Random mode (default) - shuffle prompts randomly
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 8 \
--document-length 3000 \
--repeat-count 3 \
--repeat-mode random
# Tile mode - repeat entire prompt list in sequence
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 8 \
--document-length 3000 \
--repeat-count 3 \
--repeat-mode tile
# Interleave mode - repeat each prompt consecutively
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 8 \
--document-length 3000 \
--repeat-count 3 \
--repeat-mode interleave
```
</details>
<details>
<summary><b>🗂️ Example - Prefix Caching Benchmark</b></summary>
<br/>
Benchmark the efficiency of automatic prefix caching.
**Fixed Prompt with Prefix Caching**
```bash
python3 benchmarks/benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-prompts 1 \
--repeat-count 100 \
--input-length-range 128:256
```
**ShareGPT Dataset with Prefix Caching**
```bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python3 benchmarks/benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--dataset-path /path/ShareGPT_V3_unfiltered_cleaned_split.json \
--enable-prefix-caching \
--num-prompts 20 \
--repeat-count 5 \
--input-length-range 128:256
```
</details>
<details>
<summary><b>⚡ Example - Request Prioritization Benchmark</b></summary>
<br/>
Benchmark the performance of request prioritization in vLLM.
**Basic Prioritization Test**
```bash
python3 benchmarks/benchmark_prioritization.py \
--model meta-llama/Llama-2-7b-chat-hf \
--input-len 128 \
--output-len 64 \
--num-prompts 100 \
--scheduling-policy priority
```
**Multiple Sequences per Prompt**
```bash
python3 benchmarks/benchmark_prioritization.py \
--model meta-llama/Llama-2-7b-chat-hf \
--input-len 128 \
--output-len 64 \
--num-prompts 100 \
--scheduling-policy priority \
--n 2
```
</details>
#!/bin/bash
# This script aims to tune the best server parameter combinations to maximize throughput for given requirement.
# The current server parameter combination is max_num_seqs and max_num_batched_tokens
# It also supports additional requirement: e2e latency and prefix cache.
# Pre-requisite:
# 1. Checkout to your branch, install/ update the correct running env. For TPU, activate conda env and install the corresponding torch, xla version.
# 2. If the model is customized, replace the MODEL's config with the customized config.
# 3. Set variables (ALL REQUIRED)
# BASE: your directory for vllm repo
# MODEL: the model served by vllm
# SYSTEM: the hardware, choice TPU or GPU, for other systems, "get best profile" might not support.
# TP: ways of tensor parallelism
# DOWNLOAD_DIR: directory to download and load model weights.
# INPUT_LEN: request input len
# OUTPUT_LEN: request output len
# MIN_CACHE_HIT_PCT: prefix cache rate
# MAX_LATENCY_ALLOWED_MS: (e2e) latency requirement. If there's no latency requirement, set it to a large number like 1000000000
# NUM_SEQS_LIST: a list of `max-num-seqs` you want to loop with.
# NUM_BATCHED_TOKENS_LIST: a list of `max-num-batched-tokens` you want to loop with.
# Note that the default NUM_SEQS_LIST and NUM_BATCHED_TOKENS_LIST are set for medium size input/output len, for extra short context (such as 20:20), you might need to include larger numbers in NUM_SEQS_LIST.
# 4. Run the script, it might take a long time, you can use tmux to avoid the script stop if disconnection happens.
# 5. The final result will be saved in RESULT file.
# Example use cases
# 1. Given input_len=1800, output_len=20, what's the best max_num_seqs and max_num_batched_tokens to get highest throughput?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=100000000000
# 2. If we have latency requirement to be lower than 500ms, what's the best server parameter?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=500
# 3. If we want to reach 60% prefix cache, what's the best server parameter?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=60, MAX_LATENCY_ALLOWED_MS=500
TAG=$(date +"%Y_%m_%d_%H_%M")
BASE=""
MODEL="meta-llama/Llama-3.1-8B-Instruct"
SYSTEM="TPU"
TP=1
DOWNLOAD_DIR=""
INPUT_LEN=4000
OUTPUT_LEN=16
MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000
NUM_SEQS_LIST="128 256"
NUM_BATCHED_TOKENS_LIST="512 1024 2048 4096"
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
RESULT="$LOG_FOLDER/result.txt"
PROFILE_PATH="$LOG_FOLDER/profile"
echo "result file: $RESULT"
echo "model: $MODEL"
rm -rf $LOG_FOLDER
rm -rf $PROFILE_PATH
mkdir -p $LOG_FOLDER
mkdir -p $PROFILE_PATH
cd "$BASE/vllm"
pip install -q datasets
current_hash=$(git rev-parse HEAD)
echo "hash:$current_hash" >> "$RESULT"
echo "current_hash: $current_hash"
best_throughput=0
best_max_num_seqs=0
best_num_batched_tokens=0
best_goodput=0
start_server() {
local gpu_memory_utilization=$1
local max_num_seqs=$2
local max_num_batched_tokens=$3
local vllm_log=$4
local profile_dir=$5
pkill -f vllm
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir vllm serve $MODEL \
--disable-log-requests \
--port 8004 \
--gpu-memory-utilization $gpu_memory_utilization \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--tensor-parallel-size $TP \
--enable-prefix-caching \
--load-format dummy \
--download-dir "$DOWNLOAD_DIR" \
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
# wait for 10 minutes...
server_started=0
for i in {1..60}; do
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
if [[ "$STATUS_CODE" -eq 200 ]]; then
server_started=1
break
else
sleep 10
fi
done
if (( ! server_started )); then
echo "server did not start within 10 minutes. Please check server log at $vllm_log".
return 1
else
return 0
fi
}
update_best_profile() {
local profile_dir=$1
local profile_index=$2
sorted_paths=($(find "$profile_dir" -maxdepth 1 -not -path "$profile_dir" | sort))
selected_profile_file=
if [[ "$SYSTEM" == "TPU" ]]; then
selected_profile_file="${sorted_paths[$profile_index]}/*.xplane.pb"
fi
if [[ "$SYSTEM" == "GPU" ]]; then
selected_profile_file="${sorted_paths[$profile_index]}"
fi
rm -f $PROFILE_PATH/*
cp $selected_profile_file $PROFILE_PATH
}
run_benchmark() {
local max_num_seqs=$1
local max_num_batched_tokens=$2
local gpu_memory_utilization=$3
echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
local profile_dir="$LOG_FOLDER/profile_${max_num_seqs}_${max_num_batched_tokens}"
echo "vllm_log: $vllm_log"
echo
rm -f $vllm_log
mkdir -p $profile_dir
pkill -f vllm
local profile_index=0
echo "starting server..."
start_server $gpu_memory_utilization $max_num_seqs $max_num_batched_tokens $vllm_log $profile_dir
result=$?
if [[ "$result" -eq 1 ]]; then
echo "server failed to start. gpu_memory_utilization:$gpu_memory_utilization, max_num_seqs:$max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
else
echo "server started."
fi
echo
echo "run benchmark test..."
meet_latency_requirement=0
# get a basic qps by using request-rate inf
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
prefix_len=$(( INPUT_LEN * MIN_CACHE_HIT_PCT / 100 ))
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name random \
--random-input-len $INPUT_LEN \
--random-output-len $OUTPUT_LEN \
--ignore-eos \
--disable-tqdm \
--request-rate inf \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 1000 \
--random-prefix-len $prefix_len \
--port 8004 \
--profile &> "$bm_log"
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
meet_latency_requirement=1
request_rate=inf
fi
if (( ! meet_latency_requirement )); then
# start from request-rate as int(throughput) + 1
request_rate=$((${throughput%.*} + 1))
while ((request_rate > 0)); do
profile_index=$((profile_index+1))
# clear prefix cache
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
sleep 5
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_${request_rate}.txt"
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name random \
--random-input-len $INPUT_LEN \
--random-output-len $OUTPUT_LEN \
--ignore-eos \
--disable-tqdm \
--request-rate $request_rate \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 100 \
--random-prefix-len $prefix_len \
--port 8004 &> "$bm_log"
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
meet_latency_requirement=1
break
fi
request_rate=$((request_rate-1))
done
fi
# write the results and update the best result.
if ((meet_latency_requirement)); then
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput" >> "$RESULT"
if (( $(echo "$throughput > $best_throughput" | bc -l) )); then
best_throughput=$throughput
best_max_num_seqs=$max_num_seqs
best_num_batched_tokens=$max_num_batched_tokens
best_goodput=$goodput
if [[ "$SYSTEM" == "TPU" ]]; then
update_best_profile "$profile_dir/plugins/profile" $profile_index
fi
if [[ "$SYSTEM" == "GPU" ]]; then
update_best_profile "$profile_dir" $profile_index
fi
fi
else
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}" >> "$RESULT"
fi
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
pkill vllm
sleep 10
printf '=%.0s' $(seq 1 20)
return 0
}
read -r -a num_seqs_list <<< "$NUM_SEQS_LIST"
read -r -a num_batched_tokens_list <<< "$NUM_BATCHED_TOKENS_LIST"
# first find out the max gpu-memory-utilization without HBM OOM.
gpu_memory_utilization=0.98
find_gpu_memory_utilization=0
while (( $(echo "$gpu_memory_utilization >= 0.9" | bc -l) )); do
start_server $gpu_memory_utilization "${num_seqs_list[-1]}" "${num_batched_tokens_list[-1]}" "$LOG_FOLDER/vllm_log_gpu_memory_utilization_$gpu_memory_utilization.log"
result=$?
if [[ "$result" -eq 0 ]]; then
find_gpu_memory_utilization=1
break
else
gpu_memory_utilization=$(echo "$gpu_memory_utilization - 0.01" | bc)
fi
done
if [[ "$find_gpu_memory_utilization" -eq 1 ]]; then
echo "Using gpu_memory_utilization=$gpu_memory_utilization to serve model."
else
echo "Cannot find a proper gpu_memory_utilization over 0.9 to serve the model, please check logs in $LOG_FOLDER."
exit 1
fi
for num_seqs in "${num_seqs_list[@]}"; do
for num_batched_tokens in "${num_batched_tokens_list[@]}"; do
run_benchmark $num_seqs $num_batched_tokens $gpu_memory_utilization
done
done
echo "finish permutations"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH" >> "$RESULT"
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import io
import json
import os
import sys
import time
import traceback
from dataclasses import dataclass, field
from typing import List, Optional, Union
from typing import Optional, Union
import aiohttp
import huggingface_hub.constants
from tqdm.asyncio import tqdm
from transformers import (AutoTokenizer, PreTrainedTokenizer,
PreTrainedTokenizerFast)
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
# NOTE(simon): do not import vLLM here so the benchmark script
# can run without vLLM installed.
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
......@@ -22,10 +28,12 @@ class RequestFuncInput:
prompt_len: int
output_len: int
model: str
best_of: int = 1
use_beam_search: bool = False
model_name: Optional[str] = None
logprobs: Optional[int] = None
extra_body: Optional[dict] = None
multi_modal_content: Optional[dict] = None
ignore_eos: bool = False
language: Optional[str] = None
@dataclass
......@@ -33,9 +41,10 @@ class RequestFuncOutput:
generated_text: str = ""
success: bool = False
latency: float = 0.0
output_tokens: int = 0
ttft: float = 0.0 # Time to first token
itl: List[float] = field(
default_factory=list) # List of inter-token latencies
itl: list[float] = field(default_factory=list) # list of inter-token latencies
tpot: float = 0.0 # avg next-token latencies
prompt_len: int = 0
error: str = ""
......@@ -47,14 +56,16 @@ async def async_request_tgi(
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
params = {
"best_of": request_func_input.best_of,
"max_new_tokens": request_func_input.output_len,
"do_sample": True,
"temperature": 0.01, # TGI does not accept 0.0 temperature.
"top_p": 0.99, # TGI does not accept 1.0 top_p.
"truncate": request_func_input.prompt_len,
"ignore_eos_token": request_func_input.ignore_eos,
}
payload = {
"inputs": request_func_input.prompt,
......@@ -62,6 +73,10 @@ async def async_request_tgi(
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
if request_func_input.ignore_eos:
output.output_tokens = request_func_input.output_len
else:
output.output_tokens = None
ttft = 0.0
st = time.perf_counter()
......@@ -75,11 +90,11 @@ async def async_request_tgi(
continue
chunk_bytes = chunk_bytes.decode("utf-8")
#NOTE: Sometimes TGI returns a ping response without
# NOTE: Sometimes TGI returns a ping response without
# any data, we should skip it.
if chunk_bytes.startswith(":"):
continue
chunk = remove_prefix(chunk_bytes, "data:")
chunk = chunk_bytes.removeprefix("data:")
data = json.loads(chunk)
timestamp = time.perf_counter()
......@@ -90,8 +105,7 @@ async def async_request_tgi(
# Decoding phase
else:
output.itl.append(timestamp -
most_recent_timestamp)
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
......@@ -118,9 +132,9 @@ async def async_request_trt_llm(
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
assert request_func_input.best_of == 1
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
payload = {
"accumulate_tokens": True,
"text_input": request_func_input.prompt,
......@@ -129,6 +143,8 @@ async def async_request_trt_llm(
"max_tokens": request_func_input.output_len,
"stream": True,
}
if request_func_input.ignore_eos:
payload["min_length"] = request_func_input.output_len
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
......@@ -143,21 +159,19 @@ async def async_request_trt_llm(
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data:")
chunk = chunk_bytes.decode("utf-8").removeprefix("data:")
data = json.loads(chunk)
output.generated_text += data["text_output"]
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
ttft = timestamp - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp -
most_recent_timestamp)
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
......@@ -181,16 +195,23 @@ async def async_request_deepspeed_mii(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert request_func_input.best_of == 1
assert not request_func_input.use_beam_search
api_url = request_func_input.api_url
assert api_url.endswith(("completions", "profile")), (
"OpenAI Completions API URL must end with 'completions' or 'profile'."
)
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
payload = {
"model": request_func_input.model,
"prompt": request_func_input.prompt,
"max_tokens": request_func_input.output_len,
"temperature": 0.01, # deepspeed-mii does not accept 0.0 temp.
"top_p": 1.0,
}
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
......@@ -201,12 +222,22 @@ async def async_request_deepspeed_mii(
st = time.perf_counter()
try:
async with session.post(url=request_func_input.api_url,
json=payload) as response:
async with session.post(
url=api_url, json=payload, headers=headers
) as response:
if response.status == 200:
parsed_resp = await response.json()
output.latency = time.perf_counter() - st
output.generated_text = parsed_resp["text"][0]
if "choices" in parsed_resp:
output.generated_text = parsed_resp["choices"][0]["text"]
elif "text" in parsed_resp:
output.generated_text = parsed_resp["text"][0]
else:
output.error = (
"Unexpected response format: "
"neither 'choices' nor 'text' found"
)
output.success = False
output.success = True
else:
output.error = response.reason or ""
......@@ -226,69 +257,86 @@ async def async_request_openai_completions(
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(
("completions", "profile")
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
assert api_url.endswith(("completions", "profile")), (
"OpenAI Completions API URL must end with 'completions' or 'profile'."
)
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
payload = {
"model": request_func_input.model,
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
"prompt": request_func_input.prompt,
"temperature": 0.0,
"best_of": request_func_input.best_of,
"repetition_penalty": 1.0,
"max_tokens": request_func_input.output_len,
"logprobs": request_func_input.logprobs,
"stream": True,
"stream_options": {
"include_usage": True,
},
}
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
}
if request_func_input.ignore_eos:
payload["ignore_eos"] = request_func_input.ignore_eos
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
async with session.post(
url=api_url, json=payload, headers=headers
) as response:
if response.status == 200:
first_chunk_received = False
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data: ")
if chunk == "[DONE]":
latency = time.perf_counter() - st
else:
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
data = json.loads(chunk)
# NOTE: Some completion API might have a last
# usage summary response without a token so we
# want to check a token was generated
if data["choices"][0]["text"]:
if choices := data.get("choices"):
# Note that text could be empty here
# e.g. for special tokens
text = choices[0].get("text")
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
if not first_chunk_received:
first_chunk_received = True
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp -
most_recent_timestamp)
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
generated_text += data["choices"][0]["text"]
generated_text += text or ""
if usage := data.get("usage"):
output.output_tokens = usage.get("completion_tokens")
if first_chunk_received:
output.success = True
else:
output.success = False
output.error = (
"Never received a valid chunk to calculate TTFT."
"This response will be marked as failed!"
)
output.generated_text = generated_text
output.success = True
output.latency = latency
output.latency = most_recent_timestamp - st
else:
output.error = response.reason or ""
output.success = False
......@@ -307,27 +355,34 @@ async def async_request_openai_chat_completions(
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(
"chat/completions"
), "OpenAI Chat Completions API URL must end with 'chat/completions'."
assert api_url.endswith(("chat/completions", "profile")), (
"OpenAI Chat Completions API URL must end with 'chat/completions'."
)
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
content = [{"type": "text", "text": request_func_input.prompt}]
if request_func_input.multi_modal_content:
content.append(request_func_input.multi_modal_content)
payload = {
"model": request_func_input.model,
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
"messages": [
{
"role": "user",
"content": content
},
{"role": "user", "content": content},
],
"temperature": 0.0,
"max_tokens": request_func_input.output_len,
"max_completion_tokens": request_func_input.output_len,
"stream": True,
"stream_options": {
"include_usage": True,
},
}
if request_func_input.ignore_eos:
payload["ignore_eos"] = request_func_input.ignore_eos
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
......@@ -341,41 +396,46 @@ async def async_request_openai_chat_completions(
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
async with session.post(
url=api_url, json=payload, headers=headers
) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk_bytes = chunk_bytes.decode("utf-8")
# NOTE: SSE comments (often used as pings) start with a colon.
# These are not JSON data payload and should be skipped.
if chunk_bytes.startswith(":"):
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data: ")
if chunk == "[DONE]":
latency = time.perf_counter() - st
else:
chunk = chunk_bytes.removeprefix("data: ")
if chunk != "[DONE]":
timestamp = time.perf_counter()
data = json.loads(chunk)
delta = data["choices"][0]["delta"]
if delta.get("content", None):
if choices := data.get("choices"):
content = choices[0]["delta"].get("content")
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
ttft = timestamp - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp -
most_recent_timestamp)
output.itl.append(timestamp - most_recent_timestamp)
generated_text += delta["content"]
generated_text += content or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get("completion_tokens")
most_recent_timestamp = timestamp
output.generated_text = generated_text
output.success = True
output.latency = latency
output.latency = most_recent_timestamp - st
else:
output.error = response.reason or ""
output.success = False
......@@ -389,36 +449,162 @@ async def async_request_openai_chat_completions(
return output
# Since vllm must support Python 3.8, we can't use str.removeprefix(prefix)
# introduced in Python 3.9
def remove_prefix(text: str, prefix: str) -> str:
if text.startswith(prefix):
return text[len(prefix):]
return text
async def async_request_openai_audio(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
# Lazy import without PlaceholderModule to avoid vllm dep.
import soundfile
api_url = request_func_input.api_url
assert api_url.endswith(("transcriptions", "translations")), (
"OpenAI Chat Completions API URL must end with 'transcriptions' "
)
"or `translations`."
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
content = [{"type": "text", "text": request_func_input.prompt}]
payload = {
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
"temperature": 0.0,
"max_completion_tokens": request_func_input.output_len,
"stream": True,
"language": "en",
# Flattened due to multipart/form-data
"stream_include_usage": True,
"stream_continuous_usage_stats": True,
}
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
# Send audio file
def to_bytes(y, sr):
buffer = io.BytesIO()
soundfile.write(buffer, y, sr, format="WAV")
buffer.seek(0)
return buffer
with to_bytes(*request_func_input.multi_modal_content["audio"]) as f:
form = aiohttp.FormData()
form.add_field("file", f, content_type="audio/wav")
for key, value in payload.items():
form.add_field(key, str(value))
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(
url=api_url, data=form, headers=headers
) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
timestamp = time.perf_counter()
data = json.loads(chunk)
if choices := data.get("choices"):
content = choices[0]["delta"].get("content")
# First token
if ttft == 0.0:
ttft = timestamp - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(
timestamp - most_recent_timestamp
)
generated_text += content or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get(
"completion_tokens"
)
most_recent_timestamp = timestamp
output.generated_text = generated_text
output.success = True
output.latency = most_recent_timestamp - st
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
def get_model(pretrained_model_name_or_path: str) -> str:
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
if os.getenv("VLLM_USE_MODELSCOPE", "False").lower() == "true":
from modelscope import snapshot_download
model_path = snapshot_download(
model_id=pretrained_model_name_or_path,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
from vllm.model_executor.model_loader.weight_utils import get_lock
return model_path
# Use file lock to prevent multiple processes from
# downloading the same model weights at the same time.
with get_lock(pretrained_model_name_or_path):
model_path = snapshot_download(
model_id=pretrained_model_name_or_path,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"],
)
return model_path
return pretrained_model_name_or_path
def get_tokenizer(
pretrained_model_name_or_path: str, trust_remote_code: bool
pretrained_model_name_or_path: str,
tokenizer_mode: str = "auto",
trust_remote_code: bool = False,
**kwargs,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
if pretrained_model_name_or_path is not None and not os.path.exists(
pretrained_model_name_or_path):
pretrained_model_name_or_path = get_model(
pretrained_model_name_or_path)
return AutoTokenizer.from_pretrained(pretrained_model_name_or_path,
trust_remote_code=trust_remote_code)
pretrained_model_name_or_path
):
pretrained_model_name_or_path = get_model(pretrained_model_name_or_path)
if tokenizer_mode == "slow":
if kwargs.get("use_fast", False):
raise ValueError("Cannot use the fast tokenizer in slow tokenizer mode.")
kwargs["use_fast"] = False
if tokenizer_mode == "mistral":
try:
from vllm.transformers_utils.tokenizer import MistralTokenizer
except ImportError as e:
raise ImportError(
"MistralTokenizer requires vllm package.\n"
"Please install it with `pip install vllm` "
"to use mistral tokenizer mode."
) from e
return MistralTokenizer.from_pretrained(str(pretrained_model_name_or_path))
else:
return AutoTokenizer.from_pretrained(
pretrained_model_name_or_path,
trust_remote_code=trust_remote_code,
**kwargs,
)
ASYNC_REQUEST_FUNCS = {
......@@ -428,6 +614,15 @@ ASYNC_REQUEST_FUNCS = {
"deepspeed-mii": async_request_deepspeed_mii,
"openai": async_request_openai_completions,
"openai-chat": async_request_openai_chat_completions,
"openai-audio": async_request_openai_audio,
"tensorrt-llm": async_request_trt_llm,
"scalellm": async_request_openai_completions,
"sglang": async_request_openai_completions,
"llama.cpp": async_request_openai_completions,
}
OPENAI_COMPATIBLE_BACKENDS = [
k
for k, v in ASYNC_REQUEST_FUNCS.items()
if v in (async_request_openai_completions, async_request_openai_chat_completions)
]
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
This module defines a framework for sampling benchmark requests from various
datasets. Each dataset subclass of BenchmarkDataset must implement sample
generation. Supported dataset types include:
- ShareGPT
- Random (synthetic)
- Sonnet
- BurstGPT
- HuggingFace
- VisionArena
"""
import base64
import io
import json
import logging
import random
from abc import ABC, abstractmethod
from collections.abc import Mapping
from dataclasses import dataclass
from functools import cache
from io import BytesIO
from typing import Any, Callable, Optional, Union
import numpy as np
import pandas as pd
from datasets import load_dataset
from PIL import Image
from transformers import PreTrainedTokenizerBase
from vllm.lora.request import LoRARequest
from vllm.lora.utils import get_adapter_absolute_path
from vllm.multimodal import MultiModalDataDict
from vllm.multimodal.image import convert_image_mode
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
logger = logging.getLogger(__name__)
# -----------------------------------------------------------------------------
# Data Classes
# -----------------------------------------------------------------------------
@dataclass
class SampleRequest:
"""
Represents a single inference request for benchmarking.
"""
prompt: Union[str, Any]
prompt_len: int
expected_output_len: int
multi_modal_data: Optional[Union[MultiModalDataDict, dict]] = None
lora_request: Optional[LoRARequest] = None
# -----------------------------------------------------------------------------
# Benchmark Dataset Base Class
# -----------------------------------------------------------------------------
class BenchmarkDataset(ABC):
DEFAULT_SEED = 0
IS_MULTIMODAL = False
def __init__(
self,
dataset_path: Optional[str] = None,
random_seed: int = DEFAULT_SEED,
) -> None:
"""
Initialize the BenchmarkDataset with an optional dataset path and random
seed. Args:
dataset_path (Optional[str]): Path to the dataset. If None, it
indicates that a default or random dataset might be used.
random_seed (int): Seed value for reproducible shuffling or
sampling. Defaults to DEFAULT_SEED.
"""
self.dataset_path = dataset_path
# Set the random seed, ensuring that a None value is replaced with the
# default seed.
self.random_seed = random_seed if random_seed is not None else self.DEFAULT_SEED
self.data = None
def apply_multimodal_chat_transformation(
self, prompt: str, mm_content: Optional[MultiModalDataDict] = None
) -> list[dict]:
"""
Transform a prompt and optional multimodal content into a chat format.
This method is used for chat models that expect a specific conversation
format.
"""
content = [{"text": prompt, "type": "text"}]
if mm_content is not None:
content.append(mm_content)
return [{"role": "user", "content": content}]
def load_data(self) -> None:
"""
Load data from the dataset path into self.data.
This method must be overridden by subclasses since the method to load
data will vary depending on the dataset format and source.
Raises:
NotImplementedError: If a subclass does not implement this method.
"""
# TODO (jenniferzhao): add support for downloading data
raise NotImplementedError("load_data must be implemented in subclasses.")
def get_random_lora_request(
self,
tokenizer: PreTrainedTokenizerBase,
max_loras: Optional[int] = None,
lora_path: Optional[str] = None,
) -> tuple[Optional[LoRARequest], AnyTokenizer]:
"""
Optionally select a random LoRA request and return its associated
tokenizer.
This method is used when LoRA parameters are provided. It randomly
selects a LoRA based on max_loras and retrieves a cached tokenizer for
that LoRA if available. Otherwise, it returns the base tokenizer.
Args:
tokenizer (PreTrainedTokenizerBase): The base tokenizer to use if no
LoRA is selected. max_loras (Optional[int]): The maximum number of
LoRAs available. If None, LoRA is not used. lora_path
(Optional[str]): Path to the LoRA parameters on disk. If None, LoRA
is not used.
Returns:
tuple[Optional[LoRARequest], AnyTokenizer]: A tuple where the first
element is a LoRARequest (or None if not applicable) and the second
element is the tokenizer associated with the LoRA request (or the
base tokenizer).
"""
if max_loras is None or lora_path is None:
return None, tokenizer
# Generate a random LoRA ID in the range [1, max_loras].
lora_id = random.randint(1, max_loras)
lora_request = LoRARequest(
lora_name=str(lora_id),
lora_int_id=lora_id,
lora_path=lora_path_on_disk(lora_path),
)
if lora_id not in lora_tokenizer_cache:
lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request)
# Return lora_request and the cached tokenizer if available; otherwise,
# return the base tokenizer
return lora_request, lora_tokenizer_cache[lora_id] or tokenizer
@abstractmethod
def sample(
self, tokenizer: PreTrainedTokenizerBase, num_requests: int
) -> list[SampleRequest]:
"""
Abstract method to generate sample requests from the dataset.
Subclasses must override this method to implement dataset-specific logic
for generating a list of SampleRequest objects.
Args:
tokenizer (PreTrainedTokenizerBase): The tokenizer to be used
for processing the dataset's text.
num_requests (int): The number of sample requests to generate.
Returns:
list[SampleRequest]: A list of sample requests generated from the
dataset.
"""
raise NotImplementedError("sample must be implemented in subclasses.")
def maybe_oversample_requests(
self, requests: list[SampleRequest], num_requests: int
) -> None:
"""
Oversamples the list of requests if its size is less than the desired
number.
Args:
requests (List[SampleRequest]): The current list of sampled
requests. num_requests (int): The target number of requests.
"""
if len(requests) < num_requests:
random.seed(self.random_seed)
additional = random.choices(requests, k=num_requests - len(requests))
requests.extend(additional)
logger.info("Oversampled requests to reach %d total samples.", num_requests)
# -----------------------------------------------------------------------------
# Utility Functions and Global Caches
# -----------------------------------------------------------------------------
def is_valid_sequence(
prompt_len: int,
output_len: int,
min_len: int = 4,
max_prompt_len: int = 1024,
max_total_len: int = 2048,
skip_min_output_len_check: bool = False,
) -> bool:
"""
Validate a sequence based on prompt and output lengths.
Default pruning criteria are copied from the original `sample_hf_requests`
and `sample_sharegpt_requests` functions in benchmark_serving.py, as well as
from `sample_requests` in benchmark_throughput.py.
"""
# Check for invalid conditions
prompt_too_short = prompt_len < min_len
output_too_short = (not skip_min_output_len_check) and (output_len < min_len)
prompt_too_long = prompt_len > max_prompt_len
combined_too_long = (prompt_len + output_len) > max_total_len
# Return True if none of the invalid conditions are met
return not (
prompt_too_short or output_too_short or prompt_too_long or combined_too_long
)
@cache
def lora_path_on_disk(lora_path: str) -> str:
return get_adapter_absolute_path(lora_path)
# Global cache for LoRA tokenizers.
lora_tokenizer_cache: dict[int, AnyTokenizer] = {}
def process_image(image: Any) -> Mapping[str, Any]:
"""
Process a single image input and return a multimedia content dictionary.
Supports three input types:
1. Dictionary with raw image bytes: - Expects a dict with a 'bytes' key
containing raw image data. - Loads the bytes as a PIL.Image.Image.
2. PIL.Image.Image input: - Converts the image to RGB. - Saves the image as
a JPEG in memory. - Encodes the JPEG data as a base64 string. - Returns
a dictionary with the image as a base64 data URL.
3. String input: - Treats the string as a URL or local file path. -
Prepends "file://" if the string doesn't start with "http://" or
"file://". - Returns a dictionary with the image URL.
Raises:
ValueError: If the input is not a supported type.
"""
if isinstance(image, dict) and "bytes" in image:
image = Image.open(BytesIO(image["bytes"]))
if isinstance(image, Image.Image):
image = convert_image_mode(image, "RGB")
with io.BytesIO() as image_data:
image.save(image_data, format="JPEG")
image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8")
return {
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_base64}"},
}
if isinstance(image, str):
image_url = (
image if image.startswith(("http://", "file://")) else f"file://{image}"
)
return {"type": "image_url", "image_url": {"url": image_url}}
raise ValueError(
f"Invalid image input {image}. Must be a PIL.Image.Image"
" or str or dictionary with raw image bytes."
)
# -----------------------------------------------------------------------------
# Random Dataset Implementation (Synthetic Data)
# -----------------------------------------------------------------------------
class RandomDataset(BenchmarkDataset):
# Default values copied from benchmark_serving.py for the random dataset.
DEFAULT_PREFIX_LEN = 0
DEFAULT_RANGE_RATIO = 0.0
DEFAULT_INPUT_LEN = 1024
DEFAULT_OUTPUT_LEN = 128
def __init__(
self,
**kwargs,
) -> None:
super().__init__(**kwargs)
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
range_ratio: float = DEFAULT_RANGE_RATIO,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
**kwargs,
) -> list[SampleRequest]:
# Enforce range_ratio < 1
assert range_ratio < 1.0, (
"random_range_ratio must be < 1.0 to ensure a valid sampling range"
)
vocab_size = tokenizer.vocab_size
num_special_tokens = tokenizer.num_special_tokens_to_add()
real_input_len = input_len - num_special_tokens
prefix_token_ids = (
np.random.randint(0, vocab_size, size=prefix_len).tolist()
if prefix_len > 0
else []
)
# New sampling logic: [X * (1 - b), X * (1 + b)]
input_low = int(real_input_len * (1 - range_ratio))
input_high = int(real_input_len * (1 + range_ratio))
output_low = int(output_len * (1 - range_ratio))
output_high = int(output_len * (1 + range_ratio))
# Add logging for debugging
logger.info("Sampling input_len from [%s, %s]", input_low, input_high)
logger.info("Sampling output_len from [%s, %s]", output_low, output_high)
input_lens = np.random.randint(input_low, input_high + 1, size=num_requests)
output_lens = np.random.randint(output_low, output_high + 1, size=num_requests)
offsets = np.random.randint(0, vocab_size, size=num_requests)
requests = []
for i in range(num_requests):
inner_seq = (
(offsets[i] + i + np.arange(input_lens[i])) % vocab_size
).tolist()
token_sequence = prefix_token_ids + inner_seq
prompt = tokenizer.decode(token_sequence)
# After decoding the prompt we have to encode and decode it again.
# This is done because in some cases N consecutive tokens
# give a string tokenized into != N number of tokens.
# For example for GPT2Tokenizer:
# [6880, 6881] -> ['Ġcalls', 'here'] ->
# [1650, 939, 486] -> ['Ġcall', 'sh', 'ere']
# To avoid uncontrolled change of the prompt length,
# the encoded sequence is truncated before being decode again.
total_input_len = prefix_len + int(input_lens[i])
re_encoded_sequence = tokenizer.encode(prompt, add_special_tokens=False)[
:total_input_len
]
prompt = tokenizer.decode(re_encoded_sequence)
total_input_len = len(re_encoded_sequence)
requests.append(
SampleRequest(
prompt=prompt,
prompt_len=total_input_len,
expected_output_len=int(output_lens[i]),
)
)
return requests
# -----------------------------------------------------------------------------
# ShareGPT Dataset Implementation
# -----------------------------------------------------------------------------
class ShareGPTDataset(BenchmarkDataset):
"""
Implements the ShareGPT dataset. Loads data from a JSON file and generates
sample requests based on conversation turns.
"""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
self.load_data()
def load_data(self) -> None:
if self.dataset_path is None:
raise ValueError("dataset_path must be provided for loading data.")
with open(self.dataset_path, encoding="utf-8") as f:
self.data = json.load(f)
# Filter entries with at least two conversation turns.
self.data = [
entry
for entry in self.data
if "conversations" in entry and len(entry["conversations"]) >= 2
]
random.seed(self.random_seed)
random.shuffle(self.data)
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
lora_path: Optional[str] = None,
max_loras: Optional[int] = None,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
samples: list = []
for entry in self.data:
if len(samples) >= num_requests:
break
prompt, completion = (
entry["conversations"][0]["value"],
entry["conversations"][1]["value"],
)
lora_request, tokenizer = self.get_random_lora_request(
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path
)
prompt_ids = tokenizer(prompt).input_ids
completion_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_ids)
new_output_len = len(completion_ids) if output_len is None else output_len
if not is_valid_sequence(
prompt_len,
new_output_len,
skip_min_output_len_check=output_len is not None,
):
continue
if enable_multimodal_chat:
prompt = self.apply_multimodal_chat_transformation(prompt, None)
samples.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=new_output_len,
lora_request=lora_request,
)
)
self.maybe_oversample_requests(samples, num_requests)
return samples
# -----------------------------------------------------------------------------
# Custom Dataset Implementation
# -----------------------------------------------------------------------------
class CustomDataset(BenchmarkDataset):
"""
Implements the Custom dataset. Loads data from a JSONL file and generates
sample requests based on conversation turns. E.g.,
```
{"prompt": "What is the capital of India?"}
{"prompt": "What is the capital of Iran?"}
{"prompt": "What is the capital of China?"}
```
"""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
self.load_data()
def load_data(self) -> None:
if self.dataset_path is None:
raise ValueError("dataset_path must be provided for loading data.")
# self.data will be a list of dictionaries
# e.g., [{"prompt": "What is the capital of India?"}, ...]
# This will be the standardized format which load_data()
# has to convert into depending on the filetype of dataset_path.
# sample() will assume this standardized format of self.data
self.data = []
# Load the JSONL file
if self.dataset_path.endswith(".jsonl"):
jsonl_data = pd.read_json(path_or_buf=self.dataset_path, lines=True)
# check if the JSONL file has a 'prompt' column
if "prompt" not in jsonl_data.columns:
raise ValueError("JSONL file must contain a 'prompt' column.")
# Convert each row to a dictionary and append to self.data
# This will convert the DataFrame to a list of dictionaries
# where each dictionary corresponds to a row in the DataFrame.
# This is the standardized format we want for self.data
for _, row in jsonl_data.iterrows():
self.data.append(row.to_dict())
else:
raise NotImplementedError(
"Only JSONL format is supported for CustomDataset."
)
random.seed(self.random_seed)
random.shuffle(self.data)
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
lora_path: Optional[str] = None,
max_loras: Optional[int] = None,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
skip_chat_template: bool = False,
**kwargs,
) -> list:
sampled_requests = []
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt = item["prompt"]
# apply template
if not skip_chat_template:
prompt = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
tokenize=False,
)
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
)
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# Sonnet Dataset Implementation
# -----------------------------------------------------------------------------
class SonnetDataset(BenchmarkDataset):
"""
Simplified implementation of the Sonnet dataset. Loads poem lines from a
text file and generates sample requests. Default values here copied from
`benchmark_serving.py` for the sonnet dataset.
"""
DEFAULT_PREFIX_LEN = 200
DEFAULT_INPUT_LEN = 550
DEFAULT_OUTPUT_LEN = 150
def __init__(
self,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.load_data()
def load_data(self) -> None:
if not self.dataset_path:
raise ValueError("dataset_path must be provided.")
with open(self.dataset_path, encoding="utf-8") as f:
self.data = f.readlines()
def sample(
self,
tokenizer,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
return_prompt_formatted: bool = False,
**kwargs,
) -> list:
# Calculate average token length for a poem line.
tokenized_lines = [tokenizer(line).input_ids for line in self.data]
avg_len = sum(len(tokens) for tokens in tokenized_lines) / len(tokenized_lines)
# Build the base prompt.
base_prompt = "Pick as many lines as you can from these poem lines:\n"
base_msg = [{"role": "user", "content": base_prompt}]
base_fmt = tokenizer.apply_chat_template(
base_msg, add_generation_prompt=True, tokenize=False
)
base_offset = len(tokenizer(base_fmt).input_ids)
if input_len <= base_offset:
raise ValueError(
f"'input_len' must be higher than the base prompt length "
f"({base_offset})."
)
# Determine how many poem lines to use.
num_input_lines = round((input_len - base_offset) / avg_len)
num_prefix_lines = max(round((prefix_len - base_offset) / avg_len), 0)
prefix_lines = self.data[:num_prefix_lines]
samples = []
while len(samples) < num_requests:
extra_lines = random.choices(
self.data, k=num_input_lines - num_prefix_lines
)
prompt = f"{base_prompt}{''.join(prefix_lines + extra_lines)}"
msg = [{"role": "user", "content": prompt}]
prompt_formatted = tokenizer.apply_chat_template(
msg, add_generation_prompt=True, tokenize=False
)
prompt_len = len(tokenizer(prompt_formatted).input_ids)
if prompt_len <= input_len:
samples.append(
SampleRequest(
prompt=prompt_formatted if return_prompt_formatted else prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
)
)
return samples
# -----------------------------------------------------------------------------
# BurstGPT Dataset Implementation
# -----------------------------------------------------------------------------
class BurstGPTDataset(BenchmarkDataset):
"""
Implements the BurstGPT dataset. Loads data from a CSV file and generates
sample requests based on synthetic prompt generation. Only rows with Model
"GPT-4" and positive response tokens are used.
"""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
self.load_data()
def load_data(
self,
):
if self.dataset_path is None:
raise ValueError("dataset_path must be provided for loading data.")
df = pd.read_csv(self.dataset_path)
# Filter to keep only GPT-4 rows.
gpt4_df = df[df["Model"] == "GPT-4"]
# Remove failed requests (where Response tokens is 0 or less).
gpt4_df = gpt4_df[gpt4_df["Response tokens"] > 0]
# Sample the desired number of rows.
self.data = gpt4_df
def _sample_loaded_data(self, num_requests: int) -> list:
if num_requests <= len(self.data):
data = self.data.sample(n=num_requests, random_state=self.random_seed)
else:
data = self.data.sample(
n=num_requests,
random_state=self.random_seed,
replace=True,
)
# Convert the dataframe to a list of lists.
return data.values.tolist()
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
max_loras: Optional[int] = None,
lora_path: Optional[str] = None,
**kwargs,
) -> list[SampleRequest]:
samples = []
data = self._sample_loaded_data(num_requests=num_requests)
for i in range(num_requests):
input_len = int(data[i][2])
output_len = int(data[i][3])
lora_req, tokenizer = self.get_random_lora_request(
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path
)
vocab_size = tokenizer.vocab_size
# Generate a synthetic prompt: a list of token IDs computed as (i +
# j) modulo vocab_size.
token_ids = [(i + j) % vocab_size for j in range(input_len)]
prompt = tokenizer.decode(token_ids)
samples.append(
SampleRequest(
prompt=prompt,
prompt_len=input_len,
expected_output_len=output_len,
lora_request=lora_req,
)
)
return samples
# -----------------------------------------------------------------------------
# HuggingFace Dataset Base Implementation
# -----------------------------------------------------------------------------
class HuggingFaceDataset(BenchmarkDataset):
"""Base class for datasets hosted on HuggingFace."""
SUPPORTED_DATASET_PATHS: Union[set[str], dict[str, Callable]] = set()
def __init__(
self,
dataset_path: str,
dataset_split: str,
dataset_subset: Optional[str] = None,
**kwargs,
) -> None:
super().__init__(dataset_path=dataset_path, **kwargs)
self.dataset_split = dataset_split
self.dataset_subset = dataset_subset
self.load_data()
def load_data(self) -> None:
"""Load data from HuggingFace datasets."""
self.data = load_dataset(
self.dataset_path,
name=self.dataset_subset,
split=self.dataset_split,
streaming=True,
)
self.data = self.data.shuffle(seed=self.random_seed)
# -----------------------------------------------------------------------------
# Conversation Dataset Implementation
# -----------------------------------------------------------------------------
class ConversationDataset(HuggingFaceDataset):
"""Dataset for conversation data with multimodal support."""
SUPPORTED_DATASET_PATHS = {
"lmms-lab/LLaVA-OneVision-Data",
"Aeala/ShareGPT_Vicuna_unfiltered",
}
IS_MULTIMODAL = True
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
# Filter examples with at least 2 conversations
filtered_data = self.data.filter(lambda x: len(x["conversations"]) >= 2)
sampled_requests = []
dynamic_output = output_len is None
for item in filtered_data:
if len(sampled_requests) >= num_requests:
break
conv = item["conversations"]
prompt, completion = conv[0]["value"], conv[1]["value"]
prompt_ids = tokenizer(prompt).input_ids
completion_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_ids)
completion_len = len(completion_ids)
output_len = completion_len if dynamic_output else output_len
assert isinstance(output_len, int) and output_len > 0
if dynamic_output and not is_valid_sequence(prompt_len, completion_len):
continue
mm_content = process_image(item["image"]) if "image" in item else None
if enable_multimodal_chat:
# Note: when chat is enabled the request prompt_len is no longer
# accurate and we will be using request output to count the
# actual prompt len and output len
prompt = self.apply_multimodal_chat_transformation(prompt, mm_content)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
)
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# Vision Arena Dataset Implementation
# -----------------------------------------------------------------------------
class VisionArenaDataset(HuggingFaceDataset):
"""
Vision Arena Dataset.
"""
DEFAULT_OUTPUT_LEN = 128
SUPPORTED_DATASET_PATHS = {
"lmarena-ai/VisionArena-Chat": lambda x: x["conversation"][0][0]["content"],
"lmarena-ai/vision-arena-bench-v0.1": lambda x: x["turns"][0][0]["content"],
}
IS_MULTIMODAL = True
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
sampled_requests = []
for item in self.data:
if len(sampled_requests) >= num_requests:
break
parser_fn = self.SUPPORTED_DATASET_PATHS.get(self.dataset_path)
if parser_fn is None:
raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
prompt = parser_fn(item)
mm_content = process_image(item["images"][0])
prompt_len = len(tokenizer(prompt).input_ids)
if enable_multimodal_chat:
# Note: when chat is enabled the request prompt_len is no longer
# accurate and we will be using request output to count the
# actual prompt len
prompt = self.apply_multimodal_chat_transformation(prompt, mm_content)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
)
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# Instruct Coder Dataset Implementation
# -----------------------------------------------------------------------------
class InstructCoderDataset(HuggingFaceDataset):
"""
InstructCoder Dataset.
https://huggingface.co/datasets/likaixin/InstructCoder
InstructCoder is the dataset designed for general code editing. It consists
of 114,239 instruction-input-output triplets, and covers multiple distinct
code editing scenario.
"""
DEFAULT_OUTPUT_LEN = 200 # this is the average default output length
SUPPORTED_DATASET_PATHS = {
"likaixin/InstructCoder",
}
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
sampled_requests = []
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt = f"{item['input']}\n\n{item['instruction']} Just output \
the code, do not include any explanation."
# apply template
prompt = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
tokenize=False,
)
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
)
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# MT-Bench Dataset Implementation
# -----------------------------------------------------------------------------
class MTBenchDataset(HuggingFaceDataset):
"""
MT-Bench Dataset.
https://huggingface.co/datasets/philschmid/mt-bench
We create a single turn dataset for MT-Bench.
This is similar to Spec decoding benchmark setup in vLLM
https://github.com/vllm-project/vllm/blob/9d98ab5ec/examples/offline_inference/eagle.py#L14-L18
""" # noqa: E501
DEFAULT_OUTPUT_LEN = 256 # avg len used in SD bench in vLLM
SUPPORTED_DATASET_PATHS = {
"philschmid/mt-bench",
}
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
sampled_requests = []
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt = item["turns"][0]
# apply template
prompt = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
tokenize=False,
)
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
)
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# AIMO Dataset Implementation
# -----------------------------------------------------------------------------
class AIMODataset(HuggingFaceDataset):
"""
Dataset class for processing a AIMO dataset with reasoning questions.
"""
SUPPORTED_DATASET_PATHS = {
"AI-MO/aimo-validation-aime",
"AI-MO/NuminaMath-1.5",
"AI-MO/NuminaMath-CoT",
}
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
**kwargs,
) -> list:
sampled_requests = []
dynamic_output = output_len is None
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt, completion = item["problem"], item["solution"]
prompt_ids = tokenizer(prompt).input_ids
completion_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_ids)
completion_len = len(completion_ids)
output_len = completion_len if dynamic_output else output_len
assert isinstance(output_len, int) and output_len > 0
if dynamic_output and not is_valid_sequence(
prompt_len, completion_len, max_prompt_len=2048, max_total_len=32000
):
continue
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=None,
)
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# Next Edit Prediction Dataset Implementation
# -----------------------------------------------------------------------------
zeta_prompt = """### Instruction:
You are a code completion assistant and your task is to analyze user edits and then rewrite an excerpt that the user provides, suggesting the appropriate edits within the excerpt, taking into account the cursor location.
### User Edits:
{}
### User Excerpt:
{}
### Response:
""" # noqa: E501
def _format_zeta_prompt(
sample: dict, original_start_marker: str = "<|editable_region_start|>"
) -> dict:
"""Format the zeta prompt for the Next Edit Prediction (NEP) dataset.
This function formats examples from the NEP dataset
into prompts and expected outputs. It could be
further extended to support more NEP datasets.
Args:
sample: The dataset sample containing events,
inputs, and outputs.
original_start_marker: The marker indicating the
start of the editable region. Defaults to
"<|editable_region_start|>".
Returns:
A dictionary with the formatted prompts and expected outputs.
"""
events = sample["events"]
input = sample["input"]
output = sample["output"]
prompt = zeta_prompt.format(events, input)
# following the original implementation, extract the focused region
# from the raw output
output_start_index = output.find(original_start_marker)
output_focused_region = output[output_start_index:]
expected_output = output_focused_region
return {"prompt": prompt, "expected_output": expected_output}
class NextEditPredictionDataset(HuggingFaceDataset):
"""
Dataset class for processing a Next Edit Prediction dataset.
"""
SUPPORTED_DATASET_PATHS = {
"zed-industries/zeta",
}
MAPPING_PROMPT_FUNCS = {
"zed-industries/zeta": _format_zeta_prompt,
}
def sample(self, tokenizer: PreTrainedTokenizerBase, num_requests: int, **kwargs):
formatting_prompt_func = self.MAPPING_PROMPT_FUNCS.get(self.dataset_path)
if formatting_prompt_func is None:
raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
samples = []
for sample in self.data:
sample = formatting_prompt_func(sample)
samples.append(
SampleRequest(
prompt=sample["prompt"],
prompt_len=len(tokenizer(sample["prompt"]).input_ids),
expected_output_len=len(
tokenizer(sample["expected_output"]).input_ids
),
)
)
if len(samples) >= num_requests:
break
self.maybe_oversample_requests(samples, num_requests)
return samples
# -----------------------------------------------------------------------------
# ASR Dataset Implementation
# -----------------------------------------------------------------------------
class ASRDataset(HuggingFaceDataset):
"""
Dataset class for processing a ASR dataset for transcription.
Tested on the following set:
+----------------+----------------------------------------+--------------------------+-----------------------------+
| Dataset | Domain | Speaking Style | hf-subset |
+----------------+----------------------------------------+--------------------------+-----------------------------+
| TED-LIUM | TED talks | Oratory | release1, release2, release3|
| | | | release3-speaker-adaptation |
| VoxPopuli | European Parliament | Oratory | en, de, it, fr, ... |
| LibriSpeech | Audiobook | Narrated | "LIUM/tedlium" |
| GigaSpeech | Audiobook, podcast, YouTube | Narrated, spontaneous | xs, s, m, l, xl, dev, test |
| SPGISpeech | Financial meetings | Oratory, spontaneous | S, M, L, dev, test |
| AMI | Meetings | Spontaneous | ihm, sdm |
+----------------+----------------------------------------+--------------------------+-----------------------------+
""" # noqa: E501
SUPPORTED_DATASET_PATHS = {
"openslr/librispeech_asr",
"facebook/voxpopuli",
"LIUM/tedlium",
"edinburghcstr/ami",
"speechcolab/gigaspeech",
"kensho/spgispeech",
}
DEFAULT_OUTPUT_LEN = 128
IS_MULTIMODAL = True
# TODO Whisper-specific. Abstract interface when more models are supported.
TRANSCRIPTION_PREAMBLE = "<|startoftranscript|><|en|><|transcribe|><|notimestamps|>"
skip_long_audios: bool = True
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
**kwargs,
) -> list:
import librosa
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
prompt = ASRDataset.TRANSCRIPTION_PREAMBLE
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests = []
skipped = 0
for item in self.data:
if len(sampled_requests) >= num_requests:
break
audio = item["audio"]
y, sr = audio["array"], audio["sampling_rate"]
duration_s = librosa.get_duration(y=y, sr=sr)
# Whisper max supported duration
if self.skip_long_audios and duration_s > 30:
skipped += 1
continue
mm_content = {"audio": (y, sr)}
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
)
)
if skipped:
logger.warning(
"%d samples discarded from dataset due to"
" their length being greater than"
" what Whisper supports.",
skipped,
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# SPDX-License-Identifier: Apache-2.0
"""Benchmark guided decoding throughput."""
import argparse
import dataclasses
import json
import os
import random
import time
from typing import List
import datasets
import pandas as pd
import uvloop
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
build_async_engine_client_from_engine_args)
from vllm.sampling_params import GuidedDecodingParams
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
@dataclasses.dataclass
class SampleRequest:
"""A class representing a single inference request for benchmarking.
Attributes:
prompt: The input text prompt for the model.
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
images).
prompt_len: The length of the prompt in tokens.
expected_output_len: The expected length of the output in tokens.
"""
prompt: str
prompt_len: int
expected_output_len: int
schema: dict
structure_type: str = 'json'
completion: str = None
def run_vllm(requests: List[SampleRequest],
engine_args: EngineArgs,
n: int,
guided_decoding_rate: float = 1.0,
warmup: bool = False) -> float:
from vllm import LLM, SamplingParams
llm = LLM(**vars(engine_args))
# Add the requests to the engine.
prompts: List[str] = []
sampling_params: List[SamplingParams] = []
# create a list containing random selected true or false
guided_decoding_req_idx = random.sample(
range(len(requests)), int(len(requests) * guided_decoding_rate))
if warmup:
print(">>>>> Running warmup prompt, for the first 5")
# We setup the first 5 requests to warmup FSM
# if using xgrammar dataset, we will skip warmup
warmup_requests = requests[:5]
for i, request in enumerate(warmup_requests):
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
guided_decoding=GuidedDecodingParams(json=request.schema)
if guided_decoding_rate > 0 else None,
))
llm.generate(prompts, sampling_params, use_tqdm=False)
print(">>>>> Benchmark started...")
prompts = []
sampling_params = []
for i, request in enumerate(requests):
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
guided_decoding=GuidedDecodingParams(
**{request.structure_type: request.schema})
if i in guided_decoding_req_idx else None,
))
start = time.perf_counter()
outputs = llm.generate(prompts, sampling_params, use_tqdm=False)
ret = []
for output, request in zip(outputs, requests):
generated_text = output.outputs[0].text
ret.append({
"generated": generated_text,
"expected": request.completion
})
end = time.perf_counter()
return end - start, ret
async def run_vllm_async(
requests: List[SampleRequest],
engine_args: AsyncEngineArgs,
n: int,
guided_decoding_rate: float = 1.0,
warmup: bool = False,
disable_frontend_multiprocessing: bool = False) -> float:
from vllm import SamplingParams
async with build_async_engine_client_from_engine_args(
engine_args, disable_frontend_multiprocessing) as llm:
# Add the requests to the engine.
prompts: List[str] = []
sampling_params: List[SamplingParams] = []
guided_decoding_req_idx = random.sample(
range(len(requests)), int(len(requests) * guided_decoding_rate))
if warmup:
print(">>>>>> Running warmup prompt, for the first 5")
# We setup the first 5 requests to warmup FSM
# if using xgrammar dataset, we will skip warmup
warmup_requests = requests[:5]
for i, request in enumerate(warmup_requests):
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
guided_decoding=GuidedDecodingParams(
json=request.schema)
if guided_decoding_rate > 0 else None,
))
generators = []
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
generator = llm.generate(prompt, sp, request_id=f"test{i}")
generators.append(generator)
all_gens = merge_async_iterators(*generators)
async for i, res in all_gens:
pass
print(">>>>> Benchmark started...")
prompts = []
sampling_params = []
for i, request in enumerate(requests):
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
guided_decoding=GuidedDecodingParams(json=request.schema)
if i in guided_decoding_req_idx else None,
))
generators = []
start_time = []
latencies = []
start = time.perf_counter()
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
generator = llm.generate(prompt, sp, request_id=f"test{i}")
generators.append(generator)
start_time.append(time.perf_counter())
latencies.append([])
all_gens = merge_async_iterators(*generators)
generated_texts = [''] * len(requests)
async for i, res in all_gens:
generated_texts[i] = res.outputs[0].text
lat = time.perf_counter() - start_time[i]
latencies[i].append(lat)
ret = [{
'generated': gt,
'expected': req.completion
} for gt, req in zip(generated_texts, requests)]
end = time.perf_counter()
first_latency = pd.Series([lat[0] * 1000 for lat in latencies])
next_latency = pd.Series([(lat[-1] - lat[0]) / len(lat[1:]) * 1000
for lat in latencies])
return end - start, ret, (first_latency, next_latency)
def sample_requests(tokenizer: PreTrainedTokenizerBase,
args: argparse.Namespace) -> List[SampleRequest]:
if args.dataset == 'json':
if args.json_schema_path is None:
dir_path = os.path.dirname(os.path.realpath(__file__))
args.json_schema_path = os.path.join(dir_path,
"structured_schemas",
"structured_schema_1.json")
with open(args.json_schema_path) as f:
schema = json.load(f)
prompt = f"Generate an example of a user profile given the following schema: {json.dumps(schema)}" # noqa: E501
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "grammar":
schema = """
?start: select_statement
?select_statement: "SELECT " column_list " FROM " table_name
?column_list: column_name ("," column_name)*
?table_name: identifier
?column_name: identifier
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
"""
prompt = "Generate an SQL query to show the 'username' \
and 'email' from the 'users' table."
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "regex":
regex = r"\w+@\w+\.com\n"
args.regex = regex
prompt = "Generate an email address for Alan Turing, \
who works in Enigma. End in .com and new line. \
Example result: alan.turing@enigma.com\n"
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=regex,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "choice":
choice = ["Positive", "Negative"]
args.choice = choice
prompt = "Classify this sentiment: vLLM is wonderful!"
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=choice,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "xgrammar_bench":
args.warmup = False
requests: List[SampleRequest] = []
dataset = datasets.load_dataset("NousResearch/json-mode-eval",
split="train")
print(f"dataset has {len(dataset)} entries")
len_dataset = len(dataset)
for data_point_idx in range(args.num_prompts):
idx = data_point_idx
while idx >= len_dataset:
idx -= len_dataset
schema = dataset["schema"][idx]
prompt = tokenizer.apply_chat_template(dataset["prompt"][idx],
tokenize=False)
input_len = len(tokenizer(prompt).input_ids)
completion = dataset["completion"][idx]
requests.append(
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
completion=completion))
return requests
def evaluate(ret, args):
def _eval_correctness_json(expected, actual):
# extract json string from string using regex
import re
actual = actual.replace('\n', '').replace(' ', '').strip()
try:
actual = re.search(r'\{.*\}', actual).group()
actual = json.loads(actual)
except Exception:
return False
return True
def _eval_correctness_choice(expected, actual):
return actual in args.choice
def _eval_correctness_regex(expected, actual):
import re
return re.match(args.regex, actual) is not None
def _eval_correctness(expected, actual):
if args.structure_type == 'json':
return _eval_correctness_json(expected, actual)
elif args.structure_type == 'regex':
return _eval_correctness_regex(expected, actual)
elif args.structure_type == 'choice':
return _eval_correctness_choice(expected, actual)
else:
return None
scores = []
for res in ret:
score = _eval_correctness(res['expected'], res['generated'])
res['correctness'] = score
scores.append(score)
not_none_scores = [score for score in scores if score is not None]
return (sum(not_none_scores) / len(not_none_scores) *
100) if len(not_none_scores) > 0 else None
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
# async engine is working for 'regex', 'choice' and 'grammar'
if args.dataset == 'grammar':
args.structure_type = 'grammar'
args.async_engine = False
elif args.dataset == 'regex':
args.structure_type = 'regex'
args.async_engine = False
elif args.dataset == 'choice':
args.structure_type = 'choice'
args.async_engine = False
else:
args.structure_type = 'json'
if args.no_guided_decoding:
args.guided_decoding_ratio = 0
if args.save_results:
result_file_name = f'{args.guided_decoding_ratio}guided'
result_file_name += f"_{args.model.split('/')[-1]}"
result_file_name += f"_{args.dataset}"
result_file_name += f"_{args.num_prompts}"
result_file_name += f"_out{args.output_len}"
result_file_name += f"_async{args.async_engine}"
result_file_name += f"_warmup{args.warmup}"
result_file_name += f"_chunkedprefill{args.enable_chunked_prefill}"
result_file_name += ".txt"
else:
result_file_name = None
# Synthesize a prompt with the given input length.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
requests = sample_requests(tokenizer, args)
if args.async_engine:
engine_args = AsyncEngineArgs.from_cli_args(args)
elapsed_time, ret, (first_latency, next_latency) = uvloop.run(
run_vllm_async(requests, engine_args, args.n,
args.guided_decoding_ratio, args.warmup,
args.disable_frontend_multiprocessing))
else:
engine_args = EngineArgs.from_cli_args(args)
elapsed_time, ret = run_vllm(requests, engine_args, args.n,
args.guided_decoding_ratio, args.warmup)
first_latency, next_latency = None, None
score = evaluate(ret, args)
total_num_tokens = sum(request.prompt_len + request.expected_output_len
for request in requests)
total_output_tokens = sum(request.expected_output_len
for request in requests)
if first_latency is not None:
latency_breakdown = "\nFirst token latency(msecs):\n"
latency_breakdown += f"{first_latency.describe()}"
latency_breakdown += "\nNext token latency(msecs):\n"
latency_breakdown += f"{next_latency.describe()}"
print(
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
f"{total_output_tokens / elapsed_time:.2f} output tokens/s",
f"Correct rate is {score} %",
f"{latency_breakdown if first_latency is not None else ''}")
# Output JSON results if specified
if args.output_json or result_file_name:
results = {
"elapsed_time": elapsed_time,
"num_requests": len(requests),
"total_num_tokens": total_num_tokens,
"total_output_tokens": total_output_tokens,
"requests_per_second": len(requests) / elapsed_time,
"tokens_per_second": f"{total_num_tokens / elapsed_time:.2f}",
"output_tokens_per_second":
f"{total_output_tokens / elapsed_time:.2f}",
"correct_rate(%)": score
}
results = {"outputs": ret, **results}
if first_latency is not None:
results["first_token_latency(msecs)"] = first_latency.describe(
).to_dict()
results["next_token_latency(msecs)"] = next_latency.describe(
).to_dict()
if args.output_json:
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
elif result_file_name:
with open(result_file_name, "w") as f:
json.dump(results, f, indent=4)
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark guided decoding.")
parser = AsyncEngineArgs.add_cli_args(parser)
parser.add_argument("--output-len",
type=int,
default=512,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument(
"--dataset",
default='json',
choices=['json', 'grammar', 'regex', 'choice', 'xgrammar_bench'])
parser.add_argument("--json_schema_path",
type=str,
default=None,
help="Path to json schema.")
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--num-prompts",
type=int,
default=10,
help="Number of prompts to process.")
parser.add_argument(
'--output-json',
type=str,
default=None,
help='Path to save the throughput results in JSON format.')
parser.add_argument("--async-engine",
action='store_true',
default=False,
help="Use vLLM async engine rather than LLM class.")
parser.add_argument("--no-guided-decoding",
action='store_true',
default=False,
help="Whether to disable JSON decoding or not.")
parser.add_argument("--guided-decoding-ratio",
type=float,
default=1.0,
help="Ratio of Guided Decoding requests")
parser.add_argument("--disable-frontend-multiprocessing",
action='store_true',
default=False,
help="Disable decoupled async engine frontend.")
parser.add_argument("--warmup",
action="store_true",
default=False,
help="Run warmup prompts before benchmark.")
parser.add_argument("--save-results",
action="store_true",
default=False,
help="save output results.")
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
main(args)
\ No newline at end of file
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Benchmark the latency of processing a single batch of requests."""
import argparse
import dataclasses
import json
import os
import time
from pathlib import Path
from typing import List, Optional
from typing import Any, Optional
import numpy as np
import torch
from tqdm import tqdm
import vllm.envs as envs
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import DEVICE_OPTIONS, EngineArgs
from vllm.inputs import PromptInputs
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.engine.arg_utils import EngineArgs
from vllm.inputs import PromptType
from vllm.sampling_params import BeamSearchParams
from vllm.utils import FlexibleArgumentParser
def save_to_pytorch_benchmark_format(
args: argparse.Namespace, results: dict[str, Any]
) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={"latency": results["latencies"]},
extra_info={k: results[k] for k in ["avg_latency", "percentiles"]},
)
if pt_records:
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
write_to_json(pt_file, pt_records)
def main(args: argparse.Namespace):
print(args)
engine_args = EngineArgs.from_cli_args(args)
# NOTE(woosuk): If the request cannot be processed in a single batch,
# the engine will automatically process the request in multiple batches.
llm = LLM(
model=args.model,
speculative_model=args.speculative_model,
num_speculative_tokens=args.num_speculative_tokens,
speculative_draft_tensor_parallel_size=\
args.speculative_draft_tensor_parallel_size,
tokenizer=args.tokenizer,
quantization=args.quantization,
tensor_parallel_size=args.tensor_parallel_size,
trust_remote_code=args.trust_remote_code,
dtype=args.dtype,
max_model_len=args.max_model_len,
enforce_eager=args.enforce_eager,
kv_cache_dtype=args.kv_cache_dtype,
quantization_param_path=args.quantization_param_path,
device=args.device,
ray_workers_use_nsight=args.ray_workers_use_nsight,
use_v2_block_manager=args.use_v2_block_manager,
enable_chunked_prefill=args.enable_chunked_prefill,
download_dir=args.download_dir,
block_size=args.block_size,
gpu_memory_utilization=args.gpu_memory_utilization,
load_format=args.load_format,
distributed_executor_backend=args.distributed_executor_backend,
otlp_traces_endpoint=args.otlp_traces_endpoint,
enable_prefix_caching=args.enable_prefix_caching,
llm = LLM(**dataclasses.asdict(engine_args))
assert llm.llm_engine.model_config.max_model_len >= (
args.input_len + args.output_len
), (
"Please ensure that max_model_len is greater than"
" the sum of input_len and output_len."
)
sampling_params = SamplingParams(
n=args.n,
temperature=0.0 if args.use_beam_search else 1.0,
temperature=1.0,
top_p=1.0,
use_beam_search=args.use_beam_search,
ignore_eos=True,
max_tokens=args.output_len,
detokenize=not args.disable_detokenize,
)
print(sampling_params)
dummy_prompt_token_ids = np.random.randint(10000,
size=(args.batch_size,
args.input_len))
dummy_inputs: List[PromptInputs] = [{
"prompt_token_ids": batch
} for batch in dummy_prompt_token_ids.tolist()]
dummy_prompt_token_ids = np.random.randint(
10000, size=(args.batch_size, args.input_len)
)
dummy_prompts: list[PromptType] = [
{"prompt_token_ids": batch} for batch in dummy_prompt_token_ids.tolist()
]
def llm_generate():
if not args.use_beam_search:
llm.generate(dummy_prompts, sampling_params=sampling_params, use_tqdm=False)
else:
llm.beam_search(
dummy_prompts,
BeamSearchParams(
beam_width=args.n,
max_tokens=args.output_len,
ignore_eos=True,
),
)
def run_to_completion(profile_dir: Optional[str] = None):
if profile_dir:
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
on_trace_ready=torch.profiler.tensorboard_trace_handler(
str(profile_dir))) as p:
llm.generate(dummy_inputs,
sampling_params=sampling_params,
use_tqdm=False)
print(p.key_averages())
llm.start_profile()
llm_generate()
llm.stop_profile()
else:
start_time = time.perf_counter()
llm.generate(dummy_inputs,
sampling_params=sampling_params,
use_tqdm=False)
llm_generate()
end_time = time.perf_counter()
latency = end_time - start_time
return latency
......@@ -92,11 +95,7 @@ def main(args: argparse.Namespace):
run_to_completion(profile_dir=None)
if args.profile:
profile_dir = args.profile_result_dir
if not profile_dir:
profile_dir = Path(
"."
) / "vllm_benchmark_result" / f"latency_result_{time.time()}"
profile_dir = envs.VLLM_TORCH_PROFILER_DIR
print(f"Profiling (results will be saved to '{profile_dir}')...")
run_to_completion(profile_dir=profile_dir)
return
......@@ -108,9 +107,9 @@ def main(args: argparse.Namespace):
latencies = np.array(latencies)
percentages = [10, 25, 50, 75, 90, 99]
percentiles = np.percentile(latencies, percentages)
print(f'Avg latency: {np.mean(latencies)} seconds')
print(f"Avg latency: {np.mean(latencies)} seconds")
for percentage, percentile in zip(percentages, percentiles):
print(f'{percentage}% percentile latency: {percentile} seconds')
print(f"{percentage}% percentile latency: {percentile} seconds")
# Output JSON results if specified
if args.output_json:
......@@ -121,163 +120,67 @@ def main(args: argparse.Namespace):
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
save_to_pytorch_benchmark_format(args, results)
if __name__ == '__main__':
def create_argument_parser():
parser = FlexibleArgumentParser(
description='Benchmark the latency of processing a single batch of '
'requests till completion.')
parser.add_argument('--model', type=str, default='facebook/opt-125m')
parser.add_argument('--speculative-model', type=str, default=None)
parser.add_argument('--num-speculative-tokens', type=int, default=None)
parser.add_argument('--speculative-draft-tensor-parallel-size',
'-spec-draft-tp',
type=int,
default=None)
parser.add_argument('--tokenizer', type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=[*QUANTIZATION_METHODS, None],
default=None)
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--input-len', type=int, default=32)
parser.add_argument('--output-len', type=int, default=128)
parser.add_argument('--batch-size', type=int, default=8)
parser.add_argument('--n',
type=int,
default=1,
help='Number of generated sequences per prompt.')
parser.add_argument('--use-beam-search', action='store_true')
parser.add_argument('--num-iters-warmup',
type=int,
default=10,
help='Number of iterations to run for warmup.')
parser.add_argument('--num-iters',
type=int,
default=30,
help='Number of iterations to run.')
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
description="Benchmark the latency of processing a single batch of "
"requests till completion."
)
parser.add_argument("--input-len", type=int, default=32)
parser.add_argument("--output-len", type=int, default=128)
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument(
'--max-model-len',
"--n",
type=int,
default=None,
help='Maximum length of a sequence (including prompt and output). '
'If None, will be derived from the model.')
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument('--enforce-eager',
action='store_true',
help='enforce eager mode and disable CUDA graph')
parser.add_argument(
'--kv-cache-dtype',
type=str,
choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'],
default="auto",
help='Data type for kv cache storage. If "auto", will use model '
'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. '
'ROCm (hcu) supports fp8 (=fp8_e4m3)')
parser.add_argument(
'--quantization-param-path',
type=str,
default=None,
help='Path to the JSON file containing the KV cache scaling factors. '
'This should generally be supplied, when KV cache dtype is FP8. '
'Otherwise, KV cache scaling factors default to 1.0, which may cause '
'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
'cuda version greater than 11.8. On ROCm (hcu), FP8_E4M3 is '
'instead supported for common inference criteria.')
parser.add_argument(
'--profile',
action='store_true',
help='profile the generation process of a single batch')
parser.add_argument(
'--profile-result-dir',
type=str,
default=None,
help=('path to save the pytorch profiler output. Can be visualized '
'with ui.perfetto.dev or Tensorboard.'))
parser.add_argument("--device",
type=str,
default="auto",
choices=DEVICE_OPTIONS,
help='device type for vLLM execution')
parser.add_argument('--block-size',
type=int,
default=16,
help='block size of key/value cache')
default=1,
help="Number of generated sequences per prompt.",
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument(
'--enable-chunked-prefill',
action='store_true',
help='If True, the prefill requests can be chunked based on the '
'max_num_batched_tokens')
parser.add_argument("--enable-prefix-caching",
action='store_true',
help="Enable automatic prefix caching")
parser.add_argument('--use-v2-block-manager', action='store_true')
"--num-iters-warmup",
type=int,
default=10,
help="Number of iterations to run for warmup.",
)
parser.add_argument(
"--ray-workers-use-nsight",
action='store_true',
help="If specified, use nsight to profile ray workers",
"--num-iters", type=int, default=30, help="Number of iterations to run."
)
parser.add_argument('--download-dir',
type=str,
default=None,
help='directory to download and load the weights, '
'default to the default cache dir of huggingface')
parser.add_argument(
'--output-json',
type=str,
default=None,
help='Path to save the latency results in JSON format.')
parser.add_argument('--gpu-memory-utilization',
type=float,
default=0.9,
help='the fraction of GPU memory to be used for '
'the model executor, which can range from 0 to 1.'
'If unspecified, will use the default value of 0.9.')
"--profile",
action="store_true",
help="profile the generation process of a single batch",
)
parser.add_argument(
'--load-format',
"--output-json",
type=str,
default=EngineArgs.load_format,
choices=[
'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer',
'bitsandbytes'
],
help='The format of the model weights to load.\n\n'
'* "auto" will try to load the weights in the safetensors format '
'and fall back to the pytorch bin format if safetensors format '
'is not available.\n'
'* "pt" will load the weights in the pytorch bin format.\n'
'* "safetensors" will load the weights in the safetensors format.\n'
'* "npcache" will load the weights in pytorch format and store '
'a numpy cache to speed up the loading.\n'
'* "dummy" will initialize the weights with random values, '
'which is mainly for profiling.\n'
'* "tensorizer" will load the weights using tensorizer from '
'CoreWeave. See the Tensorize vLLM Model script in the Examples'
'section for more information.\n'
'* "bitsandbytes" will load the weights using bitsandbytes '
'quantization.\n')
parser.add_argument(
'--distributed-executor-backend',
choices=['ray', 'mp'],
default=None,
help='Backend to use for distributed serving. When more than 1 GPU '
'is used, will be automatically set to "ray" if installed '
'or "mp" (multiprocessing) otherwise.')
help="Path to save the latency results in JSON format.",
)
parser.add_argument(
'--otlp-traces-endpoint',
type=str,
default=None,
help='Target URL to which OpenTelemetry traces will be sent.')
"--disable-detokenize",
action="store_true",
help=(
"Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"
),
)
parser = EngineArgs.add_cli_args(parser)
# V1 enables prefix caching by default which skews the latency
# numbers. We need to disable prefix caching by default.
parser.set_defaults(enable_prefix_caching=False)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
if args.profile and not envs.VLLM_TORCH_PROFILER_DIR:
raise OSError(
"The environment variable 'VLLM_TORCH_PROFILER_DIR' is not set. "
"Please set it to a valid path to use torch profiler."
)
main(args)
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Offline benchmark to test the long document QA throughput.
Example usage:
# This workload samples 8 different prompts with a default input
# length of 20000 tokens, then replicates each prompt 2 times
# in random order.
python benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 8 \
--repeat-count 2
Commandline arguments:
--num-documents: The number of documents to sample prompts from.
--document-length: The length of each document in tokens.
(Optional, default: 20000)
--output-len: The number of tokens to generate for each prompt.
(Optional, default: 10)
--repeat-count: The number of times to repeat each prompt.
(Optional, default: 2)
--repeat-mode: The mode to repeat prompts. The supported modes are:
- 'random': shuffle the prompts randomly. (Default)
- 'tile': the entire prompt list is repeated in sequence. (Potentially
lowest cache hit)
- 'interleave': each prompt is repeated consecutively before
moving to the next element. (Highest cache hit)
--shuffle-seed: Random seed when the repeat mode is "random".
(Optional, default: 0)
In the meantime, it also supports all the vLLM engine args to initialize the
LLM engine. You can refer to the `vllm.engine.arg_utils.EngineArgs` for more
details.
"""
import dataclasses
import random
import time
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.utils import FlexibleArgumentParser
def test_long_document_qa(llm=None, sampling_params=None, prompts=None):
"""
Test long document QA with the given prompts and sampling parameters.
Print the time spent in processing all the prompts.
Args:
llm: The language model used for generating responses.
sampling_params: Sampling parameter used to generate the response.
prompts: A list of prompt strings to be processed by the LLM.
"""
start_time = time.time()
llm.generate(prompts, sampling_params=sampling_params)
end_time = time.time()
print(f"Time to execute all requests: {end_time - start_time:.4f} secs")
def repeat_prompts(prompts, repeat_count, mode: str):
"""
Repeat each prompt in the list for a specified number of times.
The order of prompts in the output list depends on the mode.
Args:
prompts: A list of prompts to be repeated.
repeat_count: The number of times each prompt is repeated.
mode: The mode of repetition. Supported modes are:
- 'random': Shuffle the prompts randomly after repetition.
- 'tile': Repeat the entire prompt list in sequence.
Example: [1, 2, 3] -> [1, 2, 3, 1, 2, 3].
- 'interleave': Repeat each prompt consecutively before moving to
the next. Example: [1, 2, 3] -> [1, 1, 2, 2, 3, 3].
Returns:
A list of repeated prompts in the specified order.
Raises:
ValueError: If an invalid mode is provided.
"""
print("Repeat mode: ", mode)
if mode == "random":
repeated_prompts = prompts * repeat_count
random.shuffle(repeated_prompts)
return repeated_prompts
elif mode == "tile":
return prompts * repeat_count
elif mode == "interleave":
repeated_prompts = []
for prompt in prompts:
repeated_prompts.extend([prompt] * repeat_count)
return repeated_prompts
else:
raise ValueError(
f"Invalid mode: {mode}, only support 'random', 'tile', 'interleave'"
)
def main(args):
random.seed(args.shuffle_seed)
# Prepare the prompts:
# we append the document id at the beginning to avoid any of the document
# being the prefix of other documents
prompts = [
str(i) + " ".join(["hi"] * args.document_length)
for i in range(args.num_documents)
]
prompts = repeat_prompts(prompts, args.repeat_count, mode=args.repeat_mode)
warmup_prompts = [
"This is warm up request " + str(i) + " ".join(["hi"] * args.document_length)
for i in range(args.num_documents)
]
# Create the LLM engine
engine_args = EngineArgs.from_cli_args(args)
llm = LLM(**dataclasses.asdict(engine_args))
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
print("------warm up------")
test_long_document_qa(
llm=llm,
prompts=warmup_prompts,
sampling_params=sampling_params,
)
print("------start generating------")
test_long_document_qa(
llm=llm,
prompts=prompts,
sampling_params=sampling_params,
)
def create_argument_parser():
parser = FlexibleArgumentParser(
description="Benchmark the performance with or "
"without automatic prefix caching."
)
parser.add_argument(
"--document-length",
type=int,
# Roughly the number of tokens for a system paper,
# excluding images
default=20000,
help="Range of input lengths for sampling prompts, "
'specified as "min:max" (e.g., "128:256").',
)
parser.add_argument(
"--num-documents",
type=int,
default=8,
help="Range of input lengths for sampling prompts, "
'specified as "min:max" (e.g., "128:256").',
)
parser.add_argument("--output-len", type=int, default=10)
parser.add_argument(
"--repeat-count",
type=int,
default=2,
help="Number of times to repeat each prompt",
)
parser.add_argument(
"--repeat-mode",
type=str,
default="random",
help="The mode to repeat prompts. The supported "
'modes are "random", "tile", and "interleave". '
"See repeat_prompts() in the source code for details.",
)
parser.add_argument(
"--shuffle-seed",
type=int,
default=0,
help='Random seed when the repeat mode is "random"',
)
parser = EngineArgs.add_cli_args(parser)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
main(args)
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Benchmark the efficiency of prefix caching.
......@@ -10,7 +12,8 @@ Fixed example usage:
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-prompts 1 \
--repeat-count 100
--repeat-count 100 \
--input-length-range 128:256
ShareGPT example usage:
# This command samples 20 prompts with input lengths
......@@ -25,16 +28,18 @@ ShareGPT example usage:
--input-length-range 128:256
"""
import dataclasses
import json
import random
import time
from typing import List, Optional, Tuple
from typing import Optional
from transformers import PreTrainedTokenizerBase
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.utils import FlexibleArgumentParser
import triton
# import triton
try:
......@@ -42,23 +47,23 @@ try:
except ImportError:
from backend_request_func import get_tokenizer
triton_version = triton.__version__
if triton_version.startswith("2.1"):
from triton.common.backend import compute_core_version_key
elif triton_version.startswith("3.0"):
from triton.compiler.compiler import triton_key
else:
print(f"TRITON version {triton_version} is not specifically handled.")
# triton_version = triton.__version__
# if triton_version.startswith("2.1"):
# from triton.common.backend import compute_core_version_key
# elif triton_version.startswith("3.0"):
# from triton.compiler.compiler import triton_key
# else:
# print(f"TRITON version {triton_version} is not specifically handled.")
PROMPT = "You are a helpful assistant in recognizes the content of tables in markdown format. Here is a table as fellows. You need to answer my question about the table.\n# Table\n|Opening|Opening|Sl. No.|Film|Cast|Director|Music Director|Notes|\n|----|----|----|----|----|----|----|----|\n|J A N|9|1|Agni Pushpam|Jayabharathi, Kamalahasan|Jeassy|M. K. Arjunan||\n|J A N|16|2|Priyamvada|Mohan Sharma, Lakshmi, KPAC Lalitha|K. S. Sethumadhavan|V. Dakshinamoorthy||\n|J A N|23|3|Yakshagaanam|Madhu, Sheela|Sheela|M. S. Viswanathan||\n|J A N|30|4|Paalkkadal|Sheela, Sharada|T. K. Prasad|A. T. Ummer||\n|F E B|5|5|Amma|Madhu, Srividya|M. Krishnan Nair|M. K. Arjunan||\n|F E B|13|6|Appooppan|Thikkurissi Sukumaran Nair, Kamal Haasan|P. Bhaskaran|M. S. Baburaj||\n|F E B|20|7|Srishti|Chowalloor Krishnankutty, Ravi Alummoodu|K. T. Muhammad|M. S. Baburaj||\n|F E B|20|8|Vanadevatha|Prem Nazir, Madhubala|Yusufali Kechery|G. Devarajan||\n|F E B|27|9|Samasya|Madhu, Kamalahaasan|K. Thankappan|Shyam||\n|F E B|27|10|Yudhabhoomi|K. P. Ummer, Vidhubala|Crossbelt Mani|R. K. Shekhar||\n|M A R|5|11|Seemantha Puthran|Prem Nazir, Jayabharathi|A. B. Raj|M. K. Arjunan||\n|M A R|12|12|Swapnadanam|Rani Chandra, Dr. Mohandas|K. G. George|Bhaskar Chandavarkar||\n|M A R|19|13|Thulavarsham|Prem Nazir, sreedevi, Sudheer|N. Sankaran Nair|V. Dakshinamoorthy||\n|M A R|20|14|Aruthu|Kaviyoor Ponnamma, Kamalahasan|Ravi|G. Devarajan||\n|M A R|26|15|Swimming Pool|Kamal Haasan, M. G. Soman|J. Sasikumar|M. K. Arjunan||\n\n# Question\nWhat' s the content in the (1,1) cells\n" # noqa: E501
def test_prefix(llm=None, sampling_params=None, prompts=None):
if triton_version.startswith("2.1"):
version_key = compute_core_version_key()
if triton_version.startswith("3.0"):
version_key = triton_key()
# if triton_version.startswith("2.1"):
# version_key = compute_core_version_key()
# if triton_version.startswith("3.0"):
# version_key = triton_key()
start_time = time.time()
llm.generate(prompts, sampling_params=sampling_params)
......@@ -67,13 +72,31 @@ def test_prefix(llm=None, sampling_params=None, prompts=None):
print(f"cost time {end_time - start_time}")
def sample_requests(
@dataclasses.dataclass
class Request:
prompt: str
prompt_len: int
output_len: int
def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> list[int]:
vocab = tokenizer.get_vocab()
all_special_ids = set(tokenizer.all_special_ids)
# Remove the special tokens.
return random.choices(
[v for k, v in vocab.items() if k not in all_special_ids],
k=length,
)
def sample_requests_from_dataset(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
input_length_range: Tuple[int, int],
input_length_range: tuple[int, int],
fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
) -> list[Request]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
......@@ -83,56 +106,86 @@ def sample_requests(
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
dataset = [
(data["conversations"][0]["value"], data["conversations"][1]["value"])
for data in dataset
]
# Shuffle the dataset.
random.shuffle(dataset)
min_len, max_len = input_length_range
assert min_len >= 0 and max_len >= min_len, "input_length_range too small"
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
filtered_requests: list[Request] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
if len(filtered_requests) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
prompt_token_ids = tokenizer(dataset[i][0]).input_ids
prompt = tokenizer.decode(prompt_token_ids)
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
output_len = (
len(completion_token_ids) if fixed_output_len is None else fixed_output_len
)
if min_len <= prompt_len <= max_len:
filtered_dataset.append((prompt, prompt_len, output_len))
filtered_requests.append(Request(prompt, prompt_len, output_len))
return filtered_dataset
return filtered_requests
def repeat_and_sort_requests(requests: List[Tuple[str, int, int]],
repeat_count: int,
sort: bool = False) -> List[str]:
def sample_requests_from_random(
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
input_length_range: tuple[int, int],
fixed_output_len: Optional[int],
prefix_len: int,
) -> list[Request]:
requests = []
prefix_token_ids = sample_tokens(tokenizer, prefix_len)
min_len, max_len = input_length_range
for i in range(num_requests):
unique_part_token_ids = sample_tokens(
tokenizer, random.randint(min_len - prefix_len, max_len - prefix_len)
)
prompt_token_ids = prefix_token_ids + unique_part_token_ids
prompt = tokenizer.decode(prompt_token_ids)
prompt_len = len(prompt_token_ids)
assert min_len <= prompt_len <= max_len, (
f"prompt_len {prompt_len} out of range {min_len}:{max_len}"
)
requests.append(Request(prompt, prompt_len, fixed_output_len))
return requests
def repeat_and_sort_requests(
requests: list[Request], repeat_count: int, sort: bool = False
) -> list[str]:
repeated_requests = requests * repeat_count
if sort:
repeated_requests.sort(key=lambda x: x[1])
else:
random.shuffle(repeated_requests)
return [req[0] for req in repeated_requests]
return [req.prompt for req in repeated_requests]
def main(args):
tokenizer = get_tokenizer(args.model, trust_remote_code=True)
input_length_range = tuple(map(int, args.input_length_range.split(':')))
input_length_range = tuple(map(int, args.input_length_range.split(":")))
random.seed(args.seed)
if args.dataset_path is not None:
print(f"Start to sample {args.num_prompts} prompts"
"from {args.dataset_path}")
filtered_datasets = sample_requests(
if args.prefix_len > 0:
raise ValueError(
"prefix-len is not supported when dataset-path is provided."
)
print(f"Start to sample {args.num_prompts} prompts from {args.dataset_path}")
filtered_requests = sample_requests_from_dataset(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
......@@ -140,30 +193,36 @@ def main(args):
fixed_output_len=args.output_len,
)
else:
prompt_len = len(tokenizer(PROMPT).input_ids)
filtered_datasets = [(PROMPT, prompt_len, args.output_len)
] * args.num_prompts
llm = LLM(model=args.model,
tokenizer_mode='auto',
trust_remote_code=True,
enforce_eager=True,
use_v2_block_manager=args.use_v2_block_manager,
tensor_parallel_size=args.tensor_parallel_size,
enable_prefix_caching=args.enable_prefix_caching)
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
print("Testing filtered datasets")
prompts = repeat_and_sort_requests(filtered_datasets,
repeat_count=args.repeat_count,
sort=args.sort)
print("------warm up------")
test_prefix(
llm=llm,
prompts=prompts,
sampling_params=sampling_params,
print(f"Start to sample {args.num_prompts} prompts from random")
filtered_requests = sample_requests_from_random(
num_requests=args.num_prompts,
tokenizer=tokenizer,
input_length_range=input_length_range,
fixed_output_len=args.output_len,
prefix_len=args.prefix_len,
)
# Print some helpful stats of the requests.
print(f"Sampled {len(filtered_requests)} requests.")
prompt_lens = [req.prompt_len for req in filtered_requests]
print(f"Average input length: {sum(prompt_lens) / len(prompt_lens)}")
print(f"P50 input length: {sorted(prompt_lens)[len(prompt_lens) // 2]}")
print(f"Min Prompt Length: {min(prompt_lens)}")
print(f"Max Prompt Length: {max(prompt_lens)}")
engine_args = EngineArgs.from_cli_args(args)
llm = LLM(**dataclasses.asdict(engine_args))
sampling_params = SamplingParams(
temperature=0,
max_tokens=args.output_len,
detokenize=not args.disable_detokenize,
)
print("Testing filtered requests")
prompts = repeat_and_sort_requests(
filtered_requests, repeat_count=args.repeat_count, sort=args.sort
)
print("------start generating------")
......@@ -174,40 +233,61 @@ def main(args):
)
if __name__ == "__main__":
def create_argument_parser():
parser = FlexibleArgumentParser(
description=
'Benchmark the performance with or without automatic prefix caching.')
parser.add_argument('--model',
type=str,
default='baichuan-inc/Baichuan2-13B-Chat')
parser.add_argument("--dataset-path",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument('--enable-prefix-caching',
action='store_true',
help='enable prefix caching')
parser.add_argument('--use-v2-block-manager',
action='store_true',
help='Use BlockSpaceMangerV2')
parser.add_argument('--num-prompts',
type=int,
default=1,
help="Number of the prompts sampled from dataset")
parser.add_argument('--repeat-count',
type=int,
default=100,
help='Number of times to repeat each prompt')
parser.add_argument('--sort',
action='store_true',
help='Sort prompts by input length')
parser.add_argument('--input-length-range',
type=str,
default='128:256',
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')
description="Benchmark the performance with or without "
"automatic prefix caching."
)
parser.add_argument(
"--dataset-path", type=str, default=None, help="Path to the dataset."
)
parser.add_argument("--output-len", type=int, default=10)
parser.add_argument(
"--num-prompts",
type=int,
required=True,
help="Number of the prompts sampled from dataset",
)
parser.add_argument(
"--repeat-count",
type=int,
default=1,
help="Number of times to repeat each prompt",
)
parser.add_argument(
"--sort", action="store_true", help="Sort prompts by input length"
)
parser.add_argument(
"--input-length-range",
type=str,
required=True,
help="Range of input lengths for sampling prompts,"
'specified as "min:max" (e.g., "128:256").',
)
parser.add_argument(
"--prefix-len",
type=int,
default=0,
help="Specifies the length of a common prefix to be "
"added to the input prompt. The input-length-range will "
"subtract this length when filtering prompts. Only used "
"when dataset-path is not provided.",
)
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=(
"Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"
),
)
parser = EngineArgs.add_cli_args(parser)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
main(args)
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Benchmark offline prioritization."""
import argparse
import dataclasses
import json
import random
import time
from typing import List, Optional, Tuple
from typing import Optional
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.engine.arg_utils import EngineArgs
from vllm.utils import FlexibleArgumentParser
# Select a equi-probable random priority
def get_random_flag():
return 0 if random.random() < 0.5 else 1
def sample_requests(
......@@ -15,7 +25,7 @@ def sample_requests(
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
) -> list[tuple[str, int, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
......@@ -25,14 +35,16 @@ def sample_requests(
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
dataset = [
(data["conversations"][0]["value"], data["conversations"][1]["value"])
for data in dataset
]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
filtered_dataset: list[tuple[str, int, int]] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
......@@ -43,8 +55,9 @@ def sample_requests(
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
output_len = (
len(completion_token_ids) if fixed_output_len is None else fixed_output_len
)
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
......@@ -52,8 +65,7 @@ def sample_requests(
# Prune too long sequences.
continue
#Select a equi-probable random priority
priority = 0 if random.random() < 0.5 else 1
priority = get_random_flag()
filtered_dataset.append((prompt, prompt_len, output_len, priority))
......@@ -61,47 +73,21 @@ def sample_requests(
def run_vllm(
requests: List[Tuple[str, int, int]],
model: str,
tokenizer: str,
quantization: Optional[str],
tensor_parallel_size: int,
seed: int,
requests: list[tuple[str, int, int]],
n: int,
use_beam_search: bool,
trust_remote_code: bool,
dtype: str,
max_model_len: Optional[int],
enforce_eager: bool,
kv_cache_dtype: str,
quantization_param_path: Optional[str],
device: str,
enable_prefix_caching: bool,
enable_chunked_prefill: bool,
max_num_batched_tokens: int,
gpu_memory_utilization: float = 0.9,
download_dir: Optional[str] = None,
engine_args: EngineArgs,
disable_detokenize: bool = False,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(
model=model,
tokenizer=tokenizer,
quantization=quantization,
tensor_parallel_size=tensor_parallel_size,
seed=seed,
trust_remote_code=trust_remote_code,
dtype=dtype,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
quantization_param_path=quantization_param_path,
device=device,
enable_prefix_caching=enable_prefix_caching,
download_dir=download_dir,
enable_chunked_prefill=enable_chunked_prefill,
max_num_batched_tokens=max_num_batched_tokens,
disable_log_stats=False,
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len >= (request[1] + request[2])
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of"
" input_len and output_len for all requests."
)
# Add the requests to the engine.
......@@ -114,12 +100,13 @@ def run_vllm(
sampling_params.append(
SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
temperature=1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
))
detokenize=not disable_detokenize,
)
)
start = time.perf_counter()
llm.generate(prompts, sampling_params, priority=priority, use_tqdm=True)
......@@ -133,32 +120,33 @@ def main(args: argparse.Namespace):
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
args.tokenizer, trust_remote_code=args.trust_remote_code
)
if args.dataset is None:
# Synthesize a prompt with the given input length.
prompt = "hi" * (args.input_len - 1)
requests = [(prompt, args.input_len, args.output_len)
for _ in range(args.num_prompts)]
requests = [
(prompt, args.input_len, args.output_len, get_random_flag())
for _ in range(args.num_prompts)
]
else:
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
args.output_len)
requests = sample_requests(
args.dataset, args.num_prompts, tokenizer, args.output_len
)
if args.backend == "vllm":
elapsed_time = run_vllm(
requests, args.model, args.tokenizer, args.quantization,
args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype, args.max_model_len,
args.enforce_eager, args.kv_cache_dtype,
args.quantization_param_path, args.device,
args.enable_prefix_caching, args.enable_chunked_prefill,
args.max_num_batched_tokens, args.gpu_memory_utilization,
args.download_dir)
requests, args.n, EngineArgs.from_cli_args(args), args.disable_detokenize
)
else:
raise ValueError(f"Unknown backend: {args.backend}")
total_num_tokens = sum(prompt_len + output_len
for _, prompt_len, output_len, priority in requests)
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} tokens/s")
total_num_tokens = sum(
prompt_len + output_len for _, prompt_len, output_len, priority in requests
)
print(
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} tokens/s"
)
# Output JSON results if specified
if args.output_json:
......@@ -173,116 +161,55 @@ def main(args: argparse.Namespace):
json.dump(results, f, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf", "mii"],
default="vllm")
parser.add_argument("--dataset",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument("--input-len",
type=int,
default=None,
help="Input prompt length for each request")
parser.add_argument("--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--model", type=str, default="facebook/opt-125m")
parser.add_argument("--tokenizer", type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=[*QUANTIZATION_METHODS, None],
default=None)
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument("--num-prompts",
type=int,
default=200,
help="Number of prompts to process.")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
def create_argument_parser():
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument(
'--max-model-len',
type=int,
default=None,
help='Maximum length of a sequence (including prompt and output). '
'If None, will be derived from the model.')
"--backend", type=str, choices=["vllm", "hf", "mii"], default="vllm"
)
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument('--gpu-memory-utilization',
type=float,
default=0.9,
help='the fraction of GPU memory to be used for '
'the model executor, which can range from 0 to 1.'
'If unspecified, will use the default value of 0.9.')
parser.add_argument("--enforce-eager",
action="store_true",
help="enforce eager execution")
"--dataset", type=str, default=None, help="Path to the dataset."
)
parser.add_argument(
'--kv-cache-dtype',
type=str,
choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'],
default="auto",
help='Data type for kv cache storage. If "auto", will use model '
'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. '
'ROCm (hcu) supports fp8 (=fp8_e4m3)')
"--input-len",
type=int,
default=None,
help="Input prompt length for each request",
)
parser.add_argument(
'--quantization-param-path',
type=str,
"--output-len",
type=int,
default=None,
help='Path to the JSON file containing the KV cache scaling factors. '
'This should generally be supplied, when KV cache dtype is FP8. '
'Otherwise, KV cache scaling factors default to 1.0, which may cause '
'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
'cuda version greater than 11.8. On ROCm (hcu), FP8_E4M3 is '
'instead supported for common inference criteria.')
help="Output length for each request. Overrides the "
"output length from the dataset.",
)
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda", "cpu"],
help='device type for vLLM execution, supporting CUDA and CPU.')
"--n", type=int, default=1, help="Number of generated sequences per prompt."
)
parser.add_argument(
"--enable-prefix-caching",
action='store_true',
help="enable automatic prefix caching for vLLM backend.")
parser.add_argument("--enable-chunked-prefill",
action='store_true',
help="enable chunked prefill for vLLM backend.")
parser.add_argument('--max-num-batched-tokens',
type=int,
default=None,
help='maximum number of batched tokens per '
'iteration')
parser.add_argument('--download-dir',
type=str,
default=None,
help='directory to download and load the weights, '
'default to the default cache dir of huggingface')
"--num-prompts", type=int, default=200, help="Number of prompts to process."
)
parser.add_argument(
'--output-json',
"--output-json",
type=str,
default=None,
help='Path to save the throughput results in JSON format.')
help="Path to save the throughput results in JSON format.",
)
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=(
"Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"
),
)
parser = EngineArgs.add_cli_args(parser)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
......@@ -292,4 +219,4 @@ if __name__ == "__main__":
else:
assert args.input_len is None
main(args)
main(args)
\ No newline at end of file
"""Benchmark online serving throughput.
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
r"""Benchmark online serving throughput.
On the server side, run one of the following commands:
vLLM OpenAI API server
......@@ -6,9 +8,6 @@ On the server side, run one of the following commands:
--swap-space 16 \
--disable-log-requests
(TGI backend)
./launch_tgi_server.sh <your_model> <max_batch_total_tokens>
On the client side, run:
python benchmarks/benchmark_serving.py \
--backend <backend> \
......@@ -22,27 +21,31 @@ On the client side, run:
--endpoint /generate_stream
to the end of the command above.
"""
import argparse
import asyncio
import base64
import io
import gc
import json
import os
import random
import time
import warnings
from collections.abc import AsyncGenerator, Iterable
from dataclasses import dataclass
from datetime import datetime
from typing import Any, AsyncGenerator, Collection, Dict, List, Optional, Tuple
from typing import Any, Literal, Optional
import numpy as np
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
RequestFuncOutput)
from datasets import load_dataset
from PIL.Image import Image
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from backend_request_func import (
ASYNC_REQUEST_FUNCS,
OPENAI_COMPATIBLE_BACKENDS,
RequestFuncInput,
RequestFuncOutput,
)
try:
from vllm.transformers_utils.tokenizer import get_tokenizer
except ImportError:
......@@ -53,6 +56,26 @@ try:
except ImportError:
from argparse import ArgumentParser as FlexibleArgumentParser
from benchmark_dataset import (
AIMODataset,
ASRDataset,
BurstGPTDataset,
ConversationDataset,
CustomDataset,
HuggingFaceDataset,
InstructCoderDataset,
MTBenchDataset,
NextEditPredictionDataset,
RandomDataset,
SampleRequest,
ShareGPTDataset,
SonnetDataset,
VisionArenaDataset,
)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
@dataclass
class BenchmarkMetrics:
......@@ -60,284 +83,167 @@ class BenchmarkMetrics:
total_input: int
total_output: int
request_throughput: float
request_goodput: float
output_throughput: float
total_token_throughput: float
mean_ttft_ms: float
median_ttft_ms: float
std_ttft_ms: float
percentiles_ttft_ms: List[Tuple[float, float]]
percentiles_ttft_ms: list[tuple[float, float]]
mean_tpot_ms: float
median_tpot_ms: float
std_tpot_ms: float
percentiles_tpot_ms: List[Tuple[float, float]]
percentiles_tpot_ms: list[tuple[float, float]]
mean_itl_ms: float
median_itl_ms: float
std_itl_ms: float
percentiles_itl_ms: List[Tuple[float, float]]
percentiles_itl_ms: list[tuple[float, float]]
# E2EL stands for end-to-end latency per request.
# It is the time taken on the client side from sending
# a request to receiving a complete response.
mean_e2el_ms: float
median_e2el_ms: float
std_e2el_ms: float
percentiles_e2el_ms: List[Tuple[float, float]]
percentiles_e2el_ms: list[tuple[float, float]]
def sample_sharegpt_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int] = None,
) -> List[Tuple[str, int, int, None]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
filtered_dataset.append((prompt, prompt_len, output_len, None))
return filtered_dataset
def sample_sonnet_requests(
dataset_path: str,
num_requests: int,
input_len: int,
output_len: int,
prefix_len: int,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, str, int, int, None]]:
assert (
input_len > prefix_len
), "'args.sonnet-input-len' must be greater than 'args.prefix-input-len'."
# Load the dataset.
with open(dataset_path) as f:
poem_lines = f.readlines()
# Tokenize the poem lines.
poem_token_ids = tokenizer(poem_lines).input_ids
average_poem_len = sum(
len(token_ids) for token_ids in poem_token_ids) / len(poem_token_ids)
# Base prefix for all requests.
base_prompt = "Pick as many lines as you can from these poem lines:\n"
base_message = [{
"role": "user",
"content": base_prompt,
}]
base_prompt_formatted = tokenizer.apply_chat_template(
base_message, add_generation_prompt=True, tokenize=False)
base_prompt_offset = len(tokenizer(base_prompt_formatted).input_ids)
assert (
input_len > base_prompt_offset
), f"Please set 'args.sonnet-input-len' higher than {base_prompt_offset}."
num_input_lines = round(
(input_len - base_prompt_offset) / average_poem_len)
# First approximately `prefix_len` number of tokens in the
# prompt are fixed poem lines.
assert (
prefix_len > base_prompt_offset
), f"Please set 'args.sonnet-prefix-len' higher than {base_prompt_offset}."
num_prefix_lines = round(
(prefix_len - base_prompt_offset) / average_poem_len)
prefix_lines = poem_lines[:num_prefix_lines]
# Sample the rest of lines per request.
sampled_requests: List[Tuple[str, int, int]] = []
for _ in range(num_requests):
sampled_lines = "".join(
prefix_lines +
random.sample(poem_lines, num_input_lines - num_prefix_lines))
prompt = f"{base_prompt}{sampled_lines}"
message = [
{
"role": "user",
"content": prompt,
},
]
prompt_formatted = tokenizer.apply_chat_template(
message, add_generation_prompt=True, tokenize=False)
prompt_len = len(tokenizer(prompt_formatted).input_ids)
sampled_requests.append(
(prompt, prompt_formatted, prompt_len, output_len, None))
return sampled_requests
def sample_hf_requests(
dataset_path: str,
dataset_subset: str,
dataset_split: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int] = None,
) -> List[Tuple[str, str, int, Optional[Dict[str, Collection[str]]]]]:
dataset = load_dataset(dataset_path,
name=dataset_subset,
split=dataset_split,
streaming=True)
assert "conversations" in dataset.features, (
"HF Dataset must have 'conversations' column.")
filtered_dataset = dataset.shuffle().filter(
lambda x: len(x["conversations"]) >= 2)
sampled_requests: List[Tuple[str, int, int, Dict[str,
Collection[str]]]] = []
for data in filtered_dataset:
if len(sampled_requests) == num_requests:
break
# Tokenize the prompts and completions.
prompt = data["conversations"][0]["value"]
prompt_token_ids = tokenizer(prompt).input_ids
completion = data["conversations"][1]["value"]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
if "image" in data and isinstance(data["image"], Image):
image: Image = data["image"]
image = image.convert("RGB")
image_data = io.BytesIO()
image.save(image_data, format='JPEG')
image_base64 = base64.b64encode(
image_data.getvalue()).decode("utf-8")
mm_content = {
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
},
}
def _get_current_request_rate(
ramp_up_strategy: Optional[Literal["linear", "exponential"]],
ramp_up_start_rps: Optional[int],
ramp_up_end_rps: Optional[int],
request_index: int,
total_requests: int,
request_rate: float,
) -> float:
if (
ramp_up_strategy
and ramp_up_start_rps is not None
and ramp_up_end_rps is not None
):
progress = request_index / max(total_requests - 1, 1)
if ramp_up_strategy == "linear":
increase = (ramp_up_end_rps - ramp_up_start_rps) * progress
return ramp_up_start_rps + increase
elif ramp_up_strategy == "exponential":
ratio = ramp_up_end_rps / ramp_up_start_rps
return ramp_up_start_rps * (ratio**progress)
else:
mm_content = None
sampled_requests.append((prompt, prompt_len, output_len, mm_content))
raise ValueError(f"Unknown ramp-up strategy: {ramp_up_strategy}")
return request_rate
return sampled_requests
def sample_random_requests(
prefix_len: int,
input_len: int,
output_len: int,
num_prompts: int,
range_ratio: float,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, int, int]]:
prefix_token_ids = np.random.randint(0,
tokenizer.vocab_size,
size=prefix_len).tolist()
input_lens = np.random.randint(
int(input_len * range_ratio),
input_len + 1,
size=num_prompts,
)
output_lens = np.random.randint(
int(output_len * range_ratio),
output_len + 1,
size=num_prompts,
async def get_request(
input_requests: list[SampleRequest],
request_rate: float,
burstiness: float = 1.0,
ramp_up_strategy: Optional[Literal["linear", "exponential"]] = None,
ramp_up_start_rps: Optional[int] = None,
ramp_up_end_rps: Optional[int] = None,
) -> AsyncGenerator[tuple[SampleRequest, float], None]:
"""
Asynchronously generates requests at a specified rate
with OPTIONAL burstiness and OPTIONAL ramp-up strategy.
Args:
input_requests:
A list of input requests, each represented as a SampleRequest.
request_rate:
The rate at which requests are generated (requests/s).
burstiness (optional):
The burstiness factor of the request generation.
Only takes effect when request_rate is not inf.
Default value is 1, which follows a Poisson process.
Otherwise, the request intervals follow a gamma distribution.
A lower burstiness value (0 < burstiness < 1) results
in more bursty requests, while a higher burstiness value
(burstiness > 1) results in a more uniform arrival of requests.
ramp_up_strategy (optional):
The ramp-up strategy. Can be "linear" or "exponential".
If None, uses constant request rate (specified by request_rate).
ramp_up_start_rps (optional):
The starting request rate for ramp-up.
ramp_up_end_rps (optional):
The ending request rate for ramp-up.
"""
assert burstiness > 0, (
f"A positive burstiness factor is expected, but given {burstiness}."
)
offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
input_requests = []
for i in range(num_prompts):
prompt = tokenizer.decode(prefix_token_ids +
[(offsets[i] + i + j) % tokenizer.vocab_size
for j in range(input_lens[i])])
# Convert to list to get length for ramp-up calculations
if isinstance(input_requests, Iterable) and not isinstance(input_requests, list):
input_requests = list(input_requests)
input_requests.append((prompt, int(prefix_len + input_lens[i]),
int(output_lens[i]), None))
total_requests = len(input_requests)
request_index = 0
return input_requests
for request in input_requests:
current_request_rate = _get_current_request_rate(
ramp_up_strategy,
ramp_up_start_rps,
ramp_up_end_rps,
request_index,
total_requests,
request_rate,
)
yield request, current_request_rate
async def get_request(
input_requests: List[Tuple[str, int, int]],
request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
input_requests = iter(input_requests)
for request in input_requests:
yield request
request_index += 1
if request_rate == float("inf"):
if current_request_rate == float("inf"):
# If the request rate is infinity, then we don't need to wait.
continue
# Sample the request interval from the exponential distribution.
interval = np.random.exponential(1.0 / request_rate)
theta = 1.0 / (current_request_rate * burstiness)
# Sample the request interval from the gamma distribution.
# If burstiness is 1, it follows exponential distribution.
interval = np.random.gamma(shape=burstiness, scale=theta)
# The next request will be sent after the interval.
await asyncio.sleep(interval)
def calculate_metrics(
input_requests: List[Tuple[str, int, int]],
outputs: List[RequestFuncOutput],
input_requests: list[SampleRequest],
outputs: list[RequestFuncOutput],
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
selected_percentile_metrics: List[str],
selected_percentiles: List[float],
) -> Tuple[BenchmarkMetrics, List[int]]:
actual_output_lens: List[int] = []
selected_percentile_metrics: list[str],
selected_percentiles: list[float],
goodput_config_dict: dict[str, float],
) -> tuple[BenchmarkMetrics, list[int]]:
actual_output_lens: list[int] = []
total_input = 0
completed = 0
itls: List[float] = []
tpots: List[float] = []
ttfts: List[float] = []
e2els: List[float] = []
good_completed = 0
itls: list[float] = []
tpots: list[float] = []
all_tpots: list[float] = []
ttfts: list[float] = []
e2els: list[float] = []
for i in range(len(outputs)):
if outputs[i].success:
# We use the tokenizer to count the number of output tokens for all
# serving backends instead of looking at len(outputs[i].itl) since
# multiple output tokens may be bundled together
# Note : this may inflate the output token count slightly
output_len = len(
tokenizer(outputs[i].generated_text,
add_special_tokens=False).input_ids)
output_len = outputs[i].output_tokens
if not output_len:
# We use the tokenizer to count the number of output tokens
# for some serving backends instead of looking at
# len(outputs[i].itl) since multiple output tokens may be
# bundled together
# Note : this may inflate the output token count slightly
output_len = len(
tokenizer(
outputs[i].generated_text, add_special_tokens=False
).input_ids
)
actual_output_lens.append(output_len)
total_input += input_requests[i][1]
total_input += input_requests[i].prompt_len
tpot = 0
if output_len > 1:
tpots.append(
(outputs[i].latency - outputs[i].ttft) / (output_len - 1))
latency_minus_ttft = outputs[i].latency - outputs[i].ttft
tpot = latency_minus_ttft / (output_len - 1)
tpots.append(tpot)
# Note: if output_len <= 1, we regard tpot as 0 for goodput
all_tpots.append(tpot)
itls += outputs[i].itl
ttfts.append(outputs[i].ttft)
e2els.append(outputs[i].latency)
......@@ -345,39 +251,70 @@ def calculate_metrics(
else:
actual_output_lens.append(0)
if goodput_config_dict:
valid_metrics = []
slo_values = []
if "ttft" in goodput_config_dict:
valid_metrics.append(ttfts)
slo_values.append(
goodput_config_dict["ttft"] / MILLISECONDS_TO_SECONDS_CONVERSION
)
if "tpot" in goodput_config_dict:
valid_metrics.append(all_tpots)
slo_values.append(
goodput_config_dict["tpot"] / MILLISECONDS_TO_SECONDS_CONVERSION
)
if "e2el" in goodput_config_dict:
valid_metrics.append(e2els)
slo_values.append(
goodput_config_dict["e2el"] / MILLISECONDS_TO_SECONDS_CONVERSION
)
for req_metric in zip(*valid_metrics):
is_good_req = all([s >= r for s, r in zip(slo_values, req_metric)])
if is_good_req:
good_completed += 1
if completed == 0:
warnings.warn(
"All requests failed. This is likely due to a misconfiguration "
"on the benchmark arguments.",
stacklevel=2)
stacklevel=2,
)
metrics = BenchmarkMetrics(
completed=completed,
total_input=total_input,
total_output=sum(actual_output_lens),
request_throughput=completed / dur_s,
request_goodput=good_completed / dur_s,
output_throughput=sum(actual_output_lens) / dur_s,
total_token_throughput=(total_input + sum(actual_output_lens)) / dur_s,
mean_ttft_ms=np.mean(ttfts or 0) *
1000, # ttfts is empty if streaming is not supported by backend
mean_ttft_ms=np.mean(ttfts or 0)
* 1000, # ttfts is empty if streaming is not supported by backend
std_ttft_ms=np.std(ttfts or 0) * 1000,
median_ttft_ms=np.median(ttfts or 0) * 1000,
percentiles_ttft_ms=[(p, np.percentile(ttfts or 0, p) * 1000)
for p in selected_percentiles],
percentiles_ttft_ms=[
(p, np.percentile(ttfts or 0, p) * 1000) for p in selected_percentiles
],
mean_tpot_ms=np.mean(tpots or 0) * 1000,
std_tpot_ms=np.std(tpots or 0) * 1000,
median_tpot_ms=np.median(tpots or 0) * 1000,
percentiles_tpot_ms=[(p, np.percentile(tpots or 0, p) * 1000)
for p in selected_percentiles],
percentiles_tpot_ms=[
(p, np.percentile(tpots or 0, p) * 1000) for p in selected_percentiles
],
mean_itl_ms=np.mean(itls or 0) * 1000,
std_itl_ms=np.std(itls or 0) * 1000,
median_itl_ms=np.median(itls or 0) * 1000,
percentiles_itl_ms=[(p, np.percentile(itls or 0, p) * 1000)
for p in selected_percentiles],
mean_e2el_ms=np.median(e2els or 0) * 1000,
percentiles_itl_ms=[
(p, np.percentile(itls or 0, p) * 1000) for p in selected_percentiles
],
mean_e2el_ms=np.mean(e2els or 0) * 1000,
std_e2el_ms=np.std(e2els or 0) * 1000,
median_e2el_ms=np.mean(e2els or 0) * 1000,
percentiles_e2el_ms=[(p, np.percentile(e2els or 0, p) * 1000)
for p in selected_percentiles],
median_e2el_ms=np.median(e2els or 0) * 1000,
percentiles_e2el_ms=[
(p, np.percentile(e2els or 0, p) * 1000) for p in selected_percentiles
],
)
return metrics, actual_output_lens
......@@ -388,16 +325,24 @@ async def benchmark(
api_url: str,
base_url: str,
model_id: str,
model_name: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: List[Tuple[str, int, int]],
input_requests: list[SampleRequest],
logprobs: Optional[int],
best_of: int,
use_beam_search: bool,
request_rate: float,
burstiness: float,
disable_tqdm: bool,
profile: bool,
selected_percentile_metrics: List[str],
selected_percentiles: List[str],
selected_percentile_metrics: list[str],
selected_percentiles: list[float],
ignore_eos: bool,
goodput_config_dict: dict[str, float],
max_concurrency: Optional[int],
lora_modules: Optional[Iterable[str]],
extra_body: Optional[dict],
ramp_up_strategy: Optional[Literal["linear", "exponential"]] = None,
ramp_up_start_rps: Optional[int] = None,
ramp_up_end_rps: Optional[int] = None,
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS[backend]
......@@ -406,71 +351,143 @@ async def benchmark(
print("Starting initial single prompt test run...")
test_prompt, test_prompt_len, test_output_len, test_mm_content = (
input_requests[0])
if backend != "openai-chat" and test_mm_content is not None:
# multi-modal benchmark is only available on OpenAI Chat backend.
raise ValueError(
"Multi-modal content is only supported on 'openai-chat' backend.")
input_requests[0].prompt,
input_requests[0].prompt_len,
input_requests[0].expected_output_len,
input_requests[0].multi_modal_data,
)
assert test_mm_content is None or isinstance(test_mm_content, dict)
test_input = RequestFuncInput(
model=model_id,
model_name=model_name,
prompt=test_prompt,
api_url=api_url,
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
best_of=best_of,
use_beam_search=use_beam_search,
multi_modal_content=test_mm_content,
ignore_eos=ignore_eos,
extra_body=extra_body,
)
test_output = await request_func(request_func_input=test_input)
if not test_output.success:
raise ValueError(
"Initial test run failed - Please make sure benchmark arguments "
f"are correctly specified. Error: {test_output.error}")
f"are correctly specified. Error: {test_output.error}"
)
else:
print("Initial test run completed. Starting main benchmark run...")
if lora_modules:
# For each input request, choose a LoRA module at random.
lora_modules = iter(
[random.choice(lora_modules) for _ in range(len(input_requests))]
)
if profile:
print("Starting profiler...")
profile_input = RequestFuncInput(
model=model_id,
model_name=model_name,
prompt=test_prompt,
api_url=base_url + "/start_profile",
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
best_of=best_of,
use_beam_search=use_beam_search,
multi_modal_content=test_mm_content,
ignore_eos=ignore_eos,
extra_body=extra_body,
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler started")
print(f"Traffic request rate: {request_rate}")
distribution = "Poisson process" if burstiness == 1.0 else "Gamma distribution"
if ramp_up_strategy is not None:
print(
f"Traffic ramp-up strategy: {ramp_up_strategy}. Will increase "
f"RPS from {ramp_up_start_rps} to {ramp_up_end_rps} RPS over "
"the duration of the benchmark."
)
else:
print(f"Traffic request rate: {request_rate} RPS.")
print(f"Burstiness factor: {burstiness} ({distribution})")
print(f"Maximum request concurrency: {max_concurrency}")
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
# This can be used once the minimum Python version is 3.10 or higher,
# and it will simplify the code in limited_request_func.
# semaphore = (asyncio.Semaphore(max_concurrency)
# if max_concurrency else contextlib.nullcontext())
semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None
async def limited_request_func(request_func_input, pbar):
if semaphore is None:
return await request_func(request_func_input=request_func_input, pbar=pbar)
async with semaphore:
return await request_func(request_func_input=request_func_input, pbar=pbar)
benchmark_start_time = time.perf_counter()
tasks: List[asyncio.Task] = []
async for request in get_request(input_requests, request_rate):
prompt, prompt_len, output_len, mm_content = request
tasks: list[asyncio.Task] = []
rps_change_events = []
last_int_rps = -1
if ramp_up_strategy is not None and ramp_up_start_rps is not None:
last_int_rps = ramp_up_start_rps
rps_change_events.append(
{
"rps": last_int_rps,
"timestamp": datetime.now().isoformat(),
}
)
async for request, current_request_rate in get_request(
input_requests,
request_rate,
burstiness,
ramp_up_strategy,
ramp_up_start_rps,
ramp_up_end_rps,
):
if ramp_up_strategy is not None:
current_int_rps = int(current_request_rate)
if current_int_rps > last_int_rps:
timestamp = datetime.now().isoformat()
for rps_val in range(last_int_rps + 1, current_int_rps + 1):
rps_change_events.append({"rps": rps_val, "timestamp": timestamp})
last_int_rps = current_int_rps
prompt, prompt_len, output_len, mm_content = (
request.prompt,
request.prompt_len,
request.expected_output_len,
request.multi_modal_data,
)
req_model_id, req_model_name = model_id, model_name
if lora_modules:
req_lora_module = next(lora_modules)
req_model_id, req_model_name = req_lora_module, req_lora_module
request_func_input = RequestFuncInput(
model=model_id,
model=req_model_id,
model_name=req_model_name,
prompt=prompt,
api_url=api_url,
prompt_len=prompt_len,
output_len=output_len,
logprobs=logprobs,
best_of=best_of,
use_beam_search=use_beam_search,
multi_modal_content=mm_content,
ignore_eos=ignore_eos,
extra_body=extra_body,
)
tasks.append(
asyncio.create_task(
request_func(request_func_input=request_func_input,
pbar=pbar)))
outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)
task = limited_request_func(request_func_input=request_func_input, pbar=pbar)
tasks.append(asyncio.create_task(task))
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
if profile:
print("Stopping profiler...")
......@@ -481,8 +498,6 @@ async def benchmark(
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
best_of=best_of,
use_beam_search=use_beam_search,
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
......@@ -500,21 +515,35 @@ async def benchmark(
tokenizer=tokenizer,
selected_percentile_metrics=selected_percentile_metrics,
selected_percentiles=selected_percentiles,
goodput_config_dict=goodput_config_dict,
)
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
print("{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):",
benchmark_duration))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
print("{:<40} {:<10}".format("Total generated tokens:",
metrics.total_output))
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
metrics.request_throughput))
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
metrics.output_throughput))
print("{:<40} {:<10.2f}".format("Total Token throughput (tok/s):",
metrics.total_token_throughput))
print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
print(
"{:<40} {:<10.2f}".format(
"Request throughput (req/s):", metrics.request_throughput
)
)
if goodput_config_dict:
print(
"{:<40} {:<10.2f}".format(
"Request goodput (req/s):", metrics.request_goodput
)
)
print(
"{:<40} {:<10.2f}".format(
"Output token throughput (tok/s):", metrics.output_throughput
)
)
print(
"{:<40} {:<10.2f}".format(
"Total Token throughput (tok/s):", metrics.total_token_throughput
)
)
result = {
"duration": benchmark_duration,
......@@ -522,6 +551,7 @@ async def benchmark(
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"request_throughput": metrics.request_throughput,
"request_goodput": metrics.request_goodput if goodput_config_dict else None,
"output_throughput": metrics.output_throughput,
"total_token_throughput": metrics.total_token_throughput,
"input_lens": [output.prompt_len for output in outputs],
......@@ -532,6 +562,9 @@ async def benchmark(
"errors": [output.error for output in outputs],
}
if rps_change_events:
result["rps_change_events"] = rps_change_events
def process_one_metric(
# E.g., "ttft"
metric_attribute_name: str,
......@@ -540,33 +573,39 @@ async def benchmark(
# E.g., "Time to First Token"
metric_header: str,
):
# This function print and add statistics of the specified
# This function prints and adds statistics of the specified
# metric.
if metric_attribute_name not in selected_percentile_metrics:
return
print("{s:{c}^{n}}".format(s=metric_header, n=50, c='-'))
print("{:<40} {:<10.2f}".format(
f"Mean {metric_name} (ms):",
getattr(metrics, f"mean_{metric_attribute_name}_ms")))
print("{:<40} {:<10.2f}".format(
f"Median {metric_name} (ms):",
getattr(metrics, f"median_{metric_attribute_name}_ms")))
print("{s:{c}^{n}}".format(s=metric_header, n=50, c="-"))
print(
"{:<40} {:<10.2f}".format(
f"Mean {metric_name} (ms):",
getattr(metrics, f"mean_{metric_attribute_name}_ms"),
)
)
print(
"{:<40} {:<10.2f}".format(
f"Median {metric_name} (ms):",
getattr(metrics, f"median_{metric_attribute_name}_ms"),
)
)
result[f"mean_{metric_attribute_name}_ms"] = getattr(
metrics, f"mean_{metric_attribute_name}_ms")
metrics, f"mean_{metric_attribute_name}_ms"
)
result[f"median_{metric_attribute_name}_ms"] = getattr(
metrics, f"median_{metric_attribute_name}_ms")
metrics, f"median_{metric_attribute_name}_ms"
)
result[f"std_{metric_attribute_name}_ms"] = getattr(
metrics, f"std_{metric_attribute_name}_ms")
for p, value in getattr(metrics,
f"percentiles_{metric_attribute_name}_ms"):
metrics, f"std_{metric_attribute_name}_ms"
)
for p, value in getattr(metrics, f"percentiles_{metric_attribute_name}_ms"):
p_word = str(int(p)) if int(p) == p else str(p)
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):",
value))
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):", value))
result[f"p{p_word}_{metric_attribute_name}_ms"] = value
process_one_metric("ttft", "TTFT", "Time to First Token")
process_one_metric("tpot", "TPOT",
"Time per Output Token (excl. 1st token)")
process_one_metric("tpot", "TPOT", "Time per Output Token (excl. 1st token)")
process_one_metric("itl", "ITL", "Inter-token Latency")
process_one_metric("e2el", "E2EL", "End-to-end Latency")
......@@ -575,6 +614,79 @@ async def benchmark(
return result
def check_goodput_args(args):
# Check and parse goodput arguments
goodput_config_dict = {}
VALID_NAMES = ["ttft", "tpot", "e2el"]
if args.goodput:
goodput_config_dict = parse_goodput(args.goodput)
for slo_name, slo_val in goodput_config_dict.items():
if slo_name not in VALID_NAMES:
raise ValueError(
f"Invalid metric name found, {slo_name}: {slo_val}. "
"The service level objective name should be one of "
f"{str(VALID_NAMES)}. "
)
if slo_val < 0:
raise ValueError(
f"Invalid value found, {slo_name}: {slo_val}. "
"The service level objective value should be "
"non-negative."
)
return goodput_config_dict
def parse_goodput(slo_pairs):
goodput_config_dict = {}
try:
for slo_pair in slo_pairs:
slo_name, slo_val = slo_pair.split(":")
goodput_config_dict[slo_name] = float(slo_val)
except ValueError as err:
raise argparse.ArgumentTypeError(
"Invalid format found for service level objectives. "
'Specify service level objectives for goodput as "KEY:VALUE" '
"pairs, where the key is a metric name, and the value is a "
"number in milliseconds."
) from err
return goodput_config_dict
def save_to_pytorch_benchmark_format(
args: argparse.Namespace, results: dict[str, Any], file_name: str
) -> None:
metrics = [
"median_ttft_ms",
"mean_ttft_ms",
"std_ttft_ms",
"p99_ttft_ms",
"mean_tpot_ms",
"median_tpot_ms",
"std_tpot_ms",
"p99_tpot_ms",
"median_itl_ms",
"mean_itl_ms",
"std_itl_ms",
"p99_itl_ms",
]
# These raw data might be useful, but they are rather big. They can be added
# later if needed
ignored_metrics = ["ttfts", "itls", "generated_texts", "errors"]
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={k: [results[k]] for k in metrics},
extra_info={
k: results[k]
for k in results
if k not in metrics and k not in ignored_metrics
},
)
if pt_records:
# Don't use json suffix here as we don't want CI to pick it up
pt_file = f"{os.path.splitext(file_name)[0]}.pytorch.json"
write_to_json(pt_file, pt_records)
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
......@@ -582,7 +694,29 @@ def main(args: argparse.Namespace):
backend = args.backend
model_id = args.model
model_name = args.served_model_name
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
tokenizer_mode = args.tokenizer_mode
# Validate ramp-up arguments
if args.ramp_up_strategy is not None:
if args.request_rate != float("inf"):
raise ValueError(
"When using ramp-up, do not specify --request-rate. "
"The request rate will be controlled by ramp-up parameters. "
"Please remove the --request-rate argument."
)
if args.ramp_up_start_rps is None or args.ramp_up_end_rps is None:
raise ValueError(
"When using --ramp-up-strategy, both --ramp-up-start-rps and "
"--ramp-up-end-rps must be specified"
)
if args.ramp_up_start_rps < 0 or args.ramp_up_end_rps < 0:
raise ValueError("Ramp-up start and end RPS must be non-negative")
if args.ramp_up_start_rps > args.ramp_up_end_rps:
raise ValueError("Ramp-up start RPS must be less than end RPS")
if args.ramp_up_strategy == "exponential" and args.ramp_up_start_rps == 0:
raise ValueError("For exponential ramp-up, the start RPS cannot be 0.")
if args.base_url is not None:
api_url = f"{args.base_url}{args.endpoint}"
......@@ -591,82 +725,169 @@ def main(args: argparse.Namespace):
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
base_url = f"http://{args.host}:{args.port}"
tokenizer = get_tokenizer(tokenizer_id,
trust_remote_code=args.trust_remote_code)
tokenizer = get_tokenizer(
tokenizer_id,
tokenizer_mode=tokenizer_mode,
trust_remote_code=args.trust_remote_code,
)
if args.dataset is not None:
warnings.warn(
"The '--dataset' argument will be deprecated in the next "
"release. Please use '--dataset-name' and "
"'--dataset-path' in the future runs.",
stacklevel=2)
input_requests = sample_sharegpt_requests(
dataset_path=args.dataset,
num_requests=args.num_prompts,
tokenizer=tokenizer,
fixed_output_len=args.sharegpt_output_len,
if args.dataset_name is None:
raise ValueError(
"Please specify '--dataset-name' and the corresponding "
"'--dataset-path' if required."
)
elif args.dataset_name == "sharegpt":
input_requests = sample_sharegpt_requests(
dataset_path=args.dataset_path,
if args.dataset_name == "custom":
dataset = CustomDataset(dataset_path=args.dataset_path)
input_requests = dataset.sample(
num_requests=args.num_prompts,
tokenizer=tokenizer,
fixed_output_len=args.sharegpt_output_len,
output_len=args.custom_output_len,
skip_chat_template=args.custom_skip_chat_template,
)
elif args.dataset_name == "sonnet":
# Do not format the prompt, pass to message directly
dataset = SonnetDataset(dataset_path=args.dataset_path)
# For the "sonnet" dataset, formatting depends on the backend.
if args.backend == "openai-chat":
input_requests = sample_sonnet_requests(
dataset_path=args.dataset_path,
input_requests = dataset.sample(
num_requests=args.num_prompts,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
return_prompt_formatted=False,
)
input_requests = [(prompt, prompt_len, output_len, None)
for prompt, prompt_formatted, prompt_len,
output_len, _ in input_requests]
else:
assert (
tokenizer.chat_template or tokenizer.default_chat_template
), "Tokenizer/model must have chat template for sonnet dataset."
input_requests = sample_sonnet_requests(
dataset_path=args.dataset_path,
assert tokenizer.chat_template or tokenizer.default_chat_template, (
"Tokenizer/model must have chat template for sonnet dataset."
)
input_requests = dataset.sample(
num_requests=args.num_prompts,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
return_prompt_formatted=True,
)
input_requests = [(prompt_formatted, prompt_len, output_len, None)
for prompt, prompt_formatted, prompt_len,
output_len, _ in input_requests]
elif args.dataset_name == "hf":
input_requests = sample_hf_requests(
# all following datasets are implemented from the
# HuggingFaceDataset base class
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
dataset_class = VisionArenaDataset
args.hf_split = "train"
args.hf_subset = None
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
dataset_class = InstructCoderDataset
args.hf_split = "train"
elif args.dataset_path in MTBenchDataset.SUPPORTED_DATASET_PATHS:
dataset_class = MTBenchDataset
args.hf_split = "train"
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
dataset_class = ConversationDataset
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
dataset_class = AIMODataset
args.hf_split = "train"
elif args.dataset_path in NextEditPredictionDataset.SUPPORTED_DATASET_PATHS: # noqa: E501
dataset_class = NextEditPredictionDataset
args.hf_split = "train"
elif args.dataset_path in ASRDataset.SUPPORTED_DATASET_PATHS:
dataset_class = ASRDataset
args.hf_split = "train"
else:
supported_datasets = set(
[
dataset_name
for cls in HuggingFaceDataset.__subclasses__()
for dataset_name in cls.SUPPORTED_DATASET_PATHS
]
)
raise ValueError(
f"Unsupported dataset path: {args.dataset_path}. "
"Huggingface dataset only supports dataset_path"
f" from one of following: {supported_datasets}. "
"Please consider contributing if you would "
"like to add support for additional dataset formats."
)
if dataset_class.IS_MULTIMODAL and backend not in [
"openai-chat",
"openai-audio",
]:
# multi-modal benchmark is only available on OpenAI Chat backend.
raise ValueError(
"Multi-modal content is only supported on 'openai-chat' and "
"'openai-audio' backend."
)
input_requests = dataset_class(
dataset_path=args.dataset_path,
dataset_subset=args.hf_subset,
dataset_split=args.hf_split,
random_seed=args.seed,
).sample(
num_requests=args.num_prompts,
tokenizer=tokenizer,
fixed_output_len=args.hf_output_len,
output_len=args.hf_output_len,
)
elif args.dataset_name == "random":
input_requests = sample_random_requests(
prefix_len=args.random_prefix_len,
input_len=args.random_input_len,
output_len=args.random_output_len,
num_prompts=args.num_prompts,
range_ratio=args.random_range_ratio,
tokenizer=tokenizer,
else:
# For datasets that follow a similar structure, use a mapping.
dataset_mapping = {
"sharegpt": lambda: ShareGPTDataset(
random_seed=args.seed, dataset_path=args.dataset_path
).sample(
tokenizer=tokenizer,
num_requests=args.num_prompts,
output_len=args.sharegpt_output_len,
),
"burstgpt": lambda: BurstGPTDataset(
random_seed=args.seed, dataset_path=args.dataset_path
).sample(tokenizer=tokenizer, num_requests=args.num_prompts),
"random": lambda: RandomDataset(dataset_path=args.dataset_path).sample(
tokenizer=tokenizer,
num_requests=args.num_prompts,
prefix_len=args.random_prefix_len,
input_len=args.random_input_len,
output_len=args.random_output_len,
range_ratio=args.random_range_ratio,
),
}
try:
input_requests = dataset_mapping[args.dataset_name]()
except KeyError as err:
raise ValueError(f"Unknown dataset: {args.dataset_name}") from err
goodput_config_dict = check_goodput_args(args)
# Collect the sampling parameters.
sampling_params = {
k: v
for k, v in {
"top_p": args.top_p,
"top_k": args.top_k,
"min_p": args.min_p,
"temperature": args.temperature,
}.items()
if v is not None
}
# Sampling parameters are only supported by openai-compatible backend.
if sampling_params and args.backend not in OPENAI_COMPATIBLE_BACKENDS:
raise ValueError(
"Sampling parameters are only supported by openai-compatible backends."
)
else:
raise ValueError(f"Unknown dataset: {args.dataset_name}")
if "temperature" not in sampling_params:
sampling_params["temperature"] = 0.0 # Default to greedy decoding.
if args.backend == "llama.cpp":
# Disable prompt caching in llama.cpp backend
sampling_params["cache_prompt"] = False
# Avoid GC processing "static" data - reduce pause times.
gc.collect()
gc.freeze()
benchmark_result = asyncio.run(
benchmark(
......@@ -674,23 +895,30 @@ def main(args: argparse.Namespace):
api_url=api_url,
base_url=base_url,
model_id=model_id,
model_name=model_name,
tokenizer=tokenizer,
input_requests=input_requests,
logprobs=args.logprobs,
best_of=args.best_of,
use_beam_search=args.use_beam_search,
request_rate=args.request_rate,
burstiness=args.burstiness,
disable_tqdm=args.disable_tqdm,
profile=args.profile,
selected_percentile_metrics=args.percentile_metrics.split(","),
selected_percentiles=[
float(p) for p in args.metric_percentiles.split(",")
],
))
selected_percentiles=[float(p) for p in args.metric_percentiles.split(",")],
ignore_eos=args.ignore_eos,
goodput_config_dict=goodput_config_dict,
max_concurrency=args.max_concurrency,
lora_modules=args.lora_modules,
extra_body=sampling_params,
ramp_up_strategy=args.ramp_up_strategy,
ramp_up_start_rps=args.ramp_up_start_rps,
ramp_up_end_rps=args.ramp_up_end_rps,
)
)
# Save config and results to json
if args.save_result:
result_json: Dict[str, Any] = {}
if args.save_result or args.append_result:
result_json: dict[str, Any] = {}
# Setup
current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
......@@ -698,8 +926,6 @@ def main(args: argparse.Namespace):
result_json["backend"] = backend
result_json["model_id"] = model_id
result_json["tokenizer_id"] = tokenizer_id
result_json["best_of"] = args.best_of
result_json["use_beam_search"] = args.use_beam_search
result_json["num_prompts"] = args.num_prompts
# Metadata
......@@ -712,28 +938,66 @@ def main(args: argparse.Namespace):
raise ValueError(
"Invalid metadata format. Please use KEY=VALUE format."
)
# Traffic
result_json["request_rate"] = (
args.request_rate if args.request_rate < float("inf") else "inf")
args.request_rate if args.request_rate < float("inf") else "inf"
)
result_json["burstiness"] = args.burstiness
result_json["max_concurrency"] = args.max_concurrency
if args.ramp_up_strategy is not None:
result_json["ramp_up_strategy"] = args.ramp_up_strategy
result_json["ramp_up_start_rps"] = args.ramp_up_start_rps
result_json["ramp_up_end_rps"] = args.ramp_up_end_rps
# Merge with benchmark result
result_json = {**result_json, **benchmark_result}
if not args.save_detailed:
# Remove fields with too many data points
for field in [
"input_lens",
"output_lens",
"ttfts",
"itls",
"generated_texts",
"errors",
]:
if field in result_json:
del result_json[field]
if field in benchmark_result:
del benchmark_result[field]
# Save to file
base_model_id = model_id.split("/")[-1]
file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json" #noqa
max_concurrency_str = (
f"-concurrency{args.max_concurrency}"
if args.max_concurrency is not None
else ""
)
if args.ramp_up_strategy is not None:
file_name = f"{backend}-ramp-up-{args.ramp_up_strategy}-{args.ramp_up_start_rps}qps-{args.ramp_up_end_rps}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json" # noqa
else:
file_name = f"{backend}-{args.request_rate}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json" # noqa
if args.result_filename:
file_name = args.result_filename
if args.result_dir:
os.makedirs(args.result_dir, exist_ok=True)
file_name = os.path.join(args.result_dir, file_name)
with open(file_name, "w") as outfile:
with open(
file_name, mode="a+" if args.append_result else "w", encoding="utf-8"
) as outfile:
# Append a newline.
if args.append_result and outfile.tell() != 0:
outfile.write("\n")
json.dump(result_json, outfile)
save_to_pytorch_benchmark_format(args, result_json, file_name)
if __name__ == "__main__":
def create_argument_parser():
parser = FlexibleArgumentParser(
description="Benchmark the online serving throughput.")
description="Benchmark the online serving throughput."
)
parser.add_argument(
"--backend",
type=str,
......@@ -746,7 +1010,8 @@ if __name__ == "__main__":
default=None,
help="Server or API base url if not using http host and port.",
)
parser.add_argument("--host", type=str, default="localhost")
# Use 127.0.0.1 here instead of localhost to force the use of ipv4
parser.add_argument("--host", type=str, default="127.0.0.1")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument(
"--endpoint",
......@@ -754,25 +1019,34 @@ if __name__ == "__main__":
default="/v1/completions",
help="API endpoint.",
)
parser.add_argument(
"--dataset",
type=str,
default=None,
help="Path to the ShareGPT dataset, will be deprecated in the "
"next release.",
)
parser.add_argument(
"--dataset-name",
type=str,
default="sharegpt",
choices=["sharegpt", "sonnet", "random", "hf"],
choices=["sharegpt", "burstgpt", "sonnet", "random", "hf", "custom"],
help="Name of the dataset to benchmark on.",
)
parser.add_argument("--dataset-path",
type=str,
default=None,
help="Path to the sharegpt/sonnet dataset. "
"Or the huggingface dataset ID if using HF dataset.")
parser.add_argument(
"--dataset-path",
type=str,
default=None,
help="Path to the sharegpt/sonnet dataset. "
"Or the huggingface dataset ID if using HF dataset.",
)
parser.add_argument(
"--max-concurrency",
type=int,
default=None,
help="Maximum number of concurrent requests. This can be used "
"to help simulate an environment where a higher level component "
"is enforcing a maximum number of concurrent requests. While the "
"--request-rate argument controls the rate at which requests are "
"initiated, this argument will control how many are actually allowed "
"to execute at a time. This means that when used in combination, the "
"actual request rate may be lower than specified with --request-rate, "
"if the server is not processing requests fast enough to keep up.",
)
parser.add_argument(
"--model",
type=str,
......@@ -782,15 +1056,7 @@ if __name__ == "__main__":
parser.add_argument(
"--tokenizer",
type=str,
help=
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
)
parser.add_argument(
"--best-of",
type=int,
default=1,
help="Generates `best_of` sequences per prompt and "
"returns the best one.",
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument(
......@@ -803,11 +1069,13 @@ if __name__ == "__main__":
"--logprobs",
type=int,
default=None,
help=("Number of logprobs-per-token to compute & return as part of "
"the request. If unspecified, then either (1) if beam search "
"is disabled, no logprobs are computed & a single dummy "
"logprob is returned for each token; or (2) if beam search "
"is enabled 1 logprob per token is computed"),
help=(
"Number of logprobs-per-token to compute & return as part of "
"the request. If unspecified, then either (1) if beam search "
"is disabled, no logprobs are computed & a single dummy "
"logprob is returned for each token; or (2) if beam search "
"is enabled 1 logprob per token is computed"
),
)
parser.add_argument(
"--request-rate",
......@@ -815,8 +1083,20 @@ if __name__ == "__main__":
default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.",
"Otherwise, we use Poisson process or gamma distribution "
"to synthesize the request arrival times.",
)
parser.add_argument(
"--burstiness",
type=float,
default=1.0,
help="Burstiness factor of the request generation. "
"Only take effect when request_rate is not inf. "
"Default value is 1, which follows Poisson process. "
"Otherwise, the request intervals follow a gamma distribution. "
"A lower burstiness value (0 < burstiness < 1) results in more "
"bursty requests. A higher burstiness value (burstiness > 1) "
"results in a more uniform arrival of requests.",
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument(
......@@ -840,6 +1120,17 @@ if __name__ == "__main__":
action="store_true",
help="Specify to save benchmark results to a json file",
)
parser.add_argument(
"--save-detailed",
action="store_true",
help="When saving the results, whether to include per request "
"information such as response, error, ttfs, tpots, etc.",
)
parser.add_argument(
"--append-result",
action="store_true",
help="Append the benchmark result to the existing json file.",
)
parser.add_argument(
"--metadata",
metavar="KEY=VALUE",
......@@ -864,46 +1155,75 @@ if __name__ == "__main__":
"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"
" format.",
)
parser.add_argument(
"--ignore-eos",
action="store_true",
help="Set ignore_eos flag when sending the benchmark request."
"Warning: ignore_eos is not supported in deepspeed_mii and tgi.",
)
parser.add_argument(
"--percentile-metrics",
type=str,
default="ttft,tpot,itl",
help="Comma-seperated list of selected metrics to report percentils. "
help="Comma-separated list of selected metrics to report percentils. "
"This argument specifies the metrics to report percentiles. "
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
"Default value is \"ttft,tpot,itl\".")
'Allowed metric names are "ttft", "tpot", "itl", "e2el". '
'Default value is "ttft,tpot,itl".',
)
parser.add_argument(
"--metric-percentiles",
type=str,
default="99",
help="Comma-seperated list of percentiles for selected metrics. "
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
"Default value is \"99\". "
"Use \"--percentile-metrics\" to select metrics.",
help="Comma-separated list of percentiles for selected metrics. "
'To report 25-th, 50-th, and 75-th percentiles, use "25,50,75". '
'Default value is "99". '
'Use "--percentile-metrics" to select metrics.',
)
parser.add_argument(
"--goodput",
nargs="+",
required=False,
help='Specify service level objectives for goodput as "KEY:VALUE" '
"pairs, where the key is a metric name, and the value is in "
'milliseconds. Multiple "KEY:VALUE" pairs can be provided, '
"separated by spaces. Allowed request level metric names are "
'"ttft", "tpot", "e2el". For more context on the definition of '
"goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 "
"and the blog: https://hao-ai-lab.github.io/blogs/distserve",
)
# group for dataset specific arguments
custom_group = parser.add_argument_group("custom dataset options")
custom_group.add_argument(
"--custom-output-len",
type=int,
default=256,
help="Number of output tokens per request, used only for custom dataset.",
)
custom_group.add_argument(
"--custom-skip-chat-template",
action="store_true",
help="Skip applying chat template to prompt, used only for custom dataset.",
)
sonnet_group = parser.add_argument_group("sonnet dataset options")
sonnet_group.add_argument(
"--sonnet-input-len",
type=int,
default=550,
help=
"Number of input tokens per request, used only for sonnet dataset.",
help="Number of input tokens per request, used only for sonnet dataset.",
)
sonnet_group.add_argument(
"--sonnet-output-len",
type=int,
default=150,
help=
"Number of output tokens per request, used only for sonnet dataset.",
help="Number of output tokens per request, used only for sonnet dataset.",
)
sonnet_group.add_argument(
"--sonnet-prefix-len",
type=int,
default=200,
help=
"Number of prefix tokens per request, used only for sonnet dataset.",
help="Number of prefix tokens per request, used only for sonnet dataset.",
)
sharegpt_group = parser.add_argument_group("sharegpt dataset options")
......@@ -912,48 +1232,52 @@ if __name__ == "__main__":
type=int,
default=None,
help="Output length for each request. Overrides the output length "
"from the ShareGPT dataset.")
"from the ShareGPT dataset.",
)
random_group = parser.add_argument_group("random dataset options")
random_group.add_argument(
"--random-input-len",
type=int,
default=1024,
help=
"Number of input tokens per request, used only for random sampling.",
help="Number of input tokens per request, used only for random sampling.",
)
random_group.add_argument(
"--random-output-len",
type=int,
default=128,
help=
"Number of output tokens per request, used only for random sampling.",
help="Number of output tokens per request, used only for random sampling.",
)
random_group.add_argument(
"--random-range-ratio",
type=float,
default=1.0,
help="Range of sampled ratio of input/output length, "
"used only for random sampling.",
default=0.0,
help="Range ratio for sampling input/output length, "
"used only for random sampling. Must be in the range [0, 1) to define "
"a symmetric sampling range"
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
)
random_group.add_argument(
"--random-prefix-len",
type=int,
default=0,
help="Number of fixed prefix tokens before random "
" context. The length range of context in a random "
" request is [random-prefix-len, "
" random-prefix-len + random-prefix-len * random-range-ratio).")
help=(
"Number of fixed prefix tokens before the random context "
"in a request. "
"The total input length is the sum of `random-prefix-len` and "
"a random "
"context length sampled from [input_len * (1 - range_ratio), "
"input_len * (1 + range_ratio)]."
),
)
hf_group = parser.add_argument_group("hf dataset options")
hf_group.add_argument("--hf-subset",
type=str,
default=None,
help="Subset of the HF dataset.")
hf_group.add_argument("--hf-split",
type=str,
default=None,
help="Split of the HF dataset.")
hf_group.add_argument(
"--hf-subset", type=str, default=None, help="Subset of the HF dataset."
)
hf_group.add_argument(
"--hf-split", type=str, default=None, help="Split of the HF dataset."
)
hf_group.add_argument(
"--hf-output-len",
type=int,
......@@ -962,5 +1286,93 @@ if __name__ == "__main__":
"from the sampled HF dataset.",
)
sampling_group = parser.add_argument_group("sampling parameters")
sampling_group.add_argument(
"--top-p",
type=float,
default=None,
help="Top-p sampling parameter. Only has effect on openai-compatible backends.",
)
sampling_group.add_argument(
"--top-k",
type=int,
default=None,
help="Top-k sampling parameter. Only has effect on openai-compatible backends.",
)
sampling_group.add_argument(
"--min-p",
type=float,
default=None,
help="Min-p sampling parameter. Only has effect on openai-compatible backends.",
)
sampling_group.add_argument(
"--temperature",
type=float,
default=None,
help="Temperature sampling parameter. Only has effect on "
"openai-compatible backends. If not specified, default to greedy "
"decoding (i.e. temperature==0.0).",
)
parser.add_argument(
"--tokenizer-mode",
type=str,
default="auto",
choices=["auto", "slow", "mistral", "custom"],
help='The tokenizer mode.\n\n* "auto" will use the '
'fast tokenizer if available.\n* "slow" will '
"always use the slow tokenizer. \n* "
'"mistral" will always use the `mistral_common` tokenizer. \n*'
'"custom" will use --tokenizer to select the preregistered tokenizer.',
)
parser.add_argument(
"--served-model-name",
type=str,
default=None,
help="The model name used in the API. "
"If not specified, the model name will be the "
"same as the ``--model`` argument. ",
)
parser.add_argument(
"--lora-modules",
nargs="+",
default=None,
help="A subset of LoRA module names passed in when "
"launching the server. For each request, the "
"script chooses a LoRA module at random.",
)
parser.add_argument(
"--ramp-up-strategy",
type=str,
default=None,
choices=["linear", "exponential"],
help="The ramp-up strategy. This would be used to "
"ramp up the request rate from initial RPS to final "
"RPS rate (specified by --ramp-up-start-rps and --ramp-up-end-rps). "
"over the duration of the benchmark.",
)
parser.add_argument(
"--ramp-up-start-rps",
type=int,
default=None,
help="The starting request rate for ramp-up (RPS). "
"Needs to be specified when --ramp-up-strategy is used.",
)
parser.add_argument(
"--ramp-up-end-rps",
type=int,
default=None,
help="The ending request rate for ramp-up (RPS). "
"Needs to be specified when --ramp-up-strategy is used.",
)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
main(args)
\ No newline at end of file
main(args)
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
r"""Benchmark online serving throughput with structured outputs.
On the server side, run one of the following commands:
(vLLM OpenAI API server)
vllm serve <your_model> --disable-log-requests
On the client side, run:
python benchmarks/benchmark_serving_structured_output.py \
--backend <backend> \
--model <your_model> \
--dataset json \
--structured-output-ratio 1.0 \
--request-rate 10 \
--num-prompts 1000
when using tgi backend, add
--endpoint /generate_stream
to the end of the command above.
"""
import argparse
import asyncio
import copy
import dataclasses
import json
import os
import random
import time
import uuid
import warnings
from collections.abc import AsyncGenerator
from dataclasses import dataclass
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from backend_request_func import (
ASYNC_REQUEST_FUNCS,
RequestFuncInput,
RequestFuncOutput,
)
try:
from vllm.transformers_utils.tokenizer import get_tokenizer
except ImportError:
from backend_request_func import get_tokenizer
try:
from vllm.utils import FlexibleArgumentParser
except ImportError:
from argparse import ArgumentParser as FlexibleArgumentParser
from vllm.v1.structured_output.backend_xgrammar import (
has_xgrammar_unsupported_json_features,
)
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
@dataclass
class BenchmarkMetrics:
completed: int
total_input: int
total_output: int
request_throughput: float
request_goodput: float
output_throughput: float
total_token_throughput: float
mean_ttft_ms: float
median_ttft_ms: float
std_ttft_ms: float
percentiles_ttft_ms: list[tuple[float, float]]
mean_tpot_ms: float
median_tpot_ms: float
std_tpot_ms: float
percentiles_tpot_ms: list[tuple[float, float]]
mean_itl_ms: float
median_itl_ms: float
std_itl_ms: float
percentiles_itl_ms: list[tuple[float, float]]
# E2EL stands for end-to-end latency per request.
# It is the time taken on the client side from sending
# a request to receiving a complete response.
mean_e2el_ms: float
median_e2el_ms: float
std_e2el_ms: float
percentiles_e2el_ms: list[tuple[float, float]]
@dataclasses.dataclass
class SampleRequest:
"""A class representing a single inference request for benchmarking.
Attributes:
prompt: The input text prompt for the model.
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
images).
prompt_len: The length of the prompt in tokens.
expected_output_len: The expected length of the output in tokens.
"""
prompt: str
prompt_len: int
expected_output_len: int
schema: dict
structure_type: str
completion: str = None
def sample_requests(
tokenizer: PreTrainedTokenizerBase, args: argparse.Namespace
) -> list[SampleRequest]:
if args.dataset == "json" or args.dataset == "json-unique":
if args.json_schema_path is None:
dir_path = os.path.dirname(os.path.realpath(__file__))
args.json_schema_path = os.path.join(
dir_path, "structured_schemas", "structured_schema_1.json"
)
json_schemas = []
with open(args.json_schema_path) as f:
schema = json.load(f)
if args.dataset == "json-unique":
json_schemas = [copy.deepcopy(schema) for _ in range(args.num_prompts)]
for i in range(len(json_schemas)):
if "properties" not in json_schemas[i]:
json_schemas[i]["properties"] = {}
json_schemas[i]["properties"][f"__optional_field_{uuid.uuid4()}"] = {
"type": "string",
"description": "An unique optional field to avoid cached schemas",
}
else:
json_schemas = [schema] * args.num_prompts
def gen_prompt(index: int):
return f"Generate an example of a brief user profile given the following schema: {json.dumps(get_schema(index))}" # noqa: E501
def get_schema(index: int):
return json_schemas[index % len(json_schemas)]
requests = [
SampleRequest(
prompt=gen_prompt(i),
prompt_len=len(tokenizer(gen_prompt(i)).input_ids),
expected_output_len=args.output_len,
schema=get_schema(i),
structure_type=args.structure_type,
)
for i in range(args.num_prompts)
]
elif args.dataset == "grammar":
schema = """
root ::= select_statement
select_statement ::= "SELECT " column " from " table " where " condition
column ::= "col_1 " | "col_2 "
table ::= "table_1 " | "table_2 "
condition ::= column "= " number
number ::= "1 " | "2 "
"""
prompt = "Generate an SQL query to show the 'username' \
and 'email' from the 'users' table."
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(
prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type,
)
for _ in range(args.num_prompts)
]
elif args.dataset == "regex":
regex = r"\w+@\w+\.com\n"
args.regex = regex
prompt = "Generate an email address for Alan Turing, \
who works in Enigma. End in .com and new line. \
Example result: alan.turing@enigma.com\n"
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(
prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=regex,
structure_type=args.structure_type,
)
for _ in range(args.num_prompts)
]
elif args.dataset == "choice":
choice = ["Positive", "Negative"]
args.choice = choice
prompt = "Classify this sentiment: vLLM is wonderful!"
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(
prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=choice,
structure_type=args.structure_type,
)
for _ in range(args.num_prompts)
]
elif args.dataset == "xgrammar_bench":
requests: list[SampleRequest] = []
dataset = datasets.load_dataset("NousResearch/json-mode-eval", split="train")
full_dataset_len = len(dataset)
def _filter_func(item):
import json
schema = json.loads(item["schema"])
return not has_xgrammar_unsupported_json_features(schema)
dataset = dataset.filter(_filter_func)
num_filtered_out = full_dataset_len - len(dataset)
print(
f"dataset has {len(dataset)} entries after filtering "
f"out {num_filtered_out} entries with unsupported features"
)
len_dataset = len(dataset)
for data_point_idx in range(args.num_prompts):
idx = data_point_idx
while idx >= len_dataset:
idx -= len_dataset
schema = dataset["schema"][idx]
prompt = tokenizer.apply_chat_template(
dataset["prompt"][idx], tokenize=False, add_generation_prompt=True
)
input_len = len(tokenizer(prompt).input_ids)
completion = dataset["completion"][idx]
requests.append(
SampleRequest(
prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type,
completion=completion,
)
)
return requests
async def get_request(
input_requests: list[SampleRequest],
request_rate: float,
burstiness: float = 1.0,
) -> AsyncGenerator[tuple[int, SampleRequest], None]:
"""
Asynchronously generates requests at a specified rate
with OPTIONAL burstiness.
Args:
input_requests:
A list of input requests, each represented as a tuple.
request_rate:
The rate at which requests are generated (requests/s).
burstiness (optional):
The burstiness factor of the request generation.
Only takes effect when request_rate is not inf.
Default value is 1, which follows a Poisson process.
Otherwise, the request intervals follow a gamma distribution.
A lower burstiness value (0 < burstiness < 1) results
in more bursty requests, while a higher burstiness value
(burstiness > 1) results in a more uniform arrival of requests.
"""
input_requests = iter(input_requests)
# Calculate scale parameter theta to maintain the desired request_rate.
assert burstiness > 0, (
f"A positive burstiness factor is expected, but given {burstiness}."
)
theta = 1.0 / (request_rate * burstiness)
for i, request in enumerate(input_requests):
yield i, request
if request_rate == float("inf"):
# If the request rate is infinity, then we don't need to wait.
continue
# Sample the request interval from the gamma distribution.
# If burstiness is 1, it follows exponential distribution.
interval = np.random.gamma(shape=burstiness, scale=theta)
# The next request will be sent after the interval.
await asyncio.sleep(interval)
def calculate_metrics(
input_requests: list[tuple[str, int, int]],
outputs: list[RequestFuncOutput],
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
selected_percentile_metrics: list[str],
selected_percentiles: list[float],
goodput_config_dict: Optional[dict[str, float]] = None,
) -> tuple[BenchmarkMetrics, list[int]]:
actual_output_lens: list[int] = []
total_input = 0
completed = 0
good_completed = 0
itls: list[float] = []
tpots: list[float] = []
all_tpots: list[float] = []
ttfts: list[float] = []
e2els: list[float] = []
for i in range(len(outputs)):
if outputs[i].success:
# We use the tokenizer to count the number of output tokens for all
# serving backends instead of looking at len(outputs[i].itl) since
# multiple output tokens may be bundled together
# Note : this may inflate the output token count slightly
output_len = len(
tokenizer(outputs[i].generated_text, add_special_tokens=False).input_ids
)
actual_output_lens.append(output_len)
total_input += input_requests[i].prompt_len
tpot = 0
if output_len > 1:
latency_minus_ttft = outputs[i].latency - outputs[i].ttft
tpot = latency_minus_ttft / (output_len - 1)
tpots.append(tpot)
outputs[i].tpot = tpot
# Note: if output_len <= 1, we regard tpot as 0 for goodput
all_tpots.append(tpot)
itls += outputs[i].itl
ttfts.append(outputs[i].ttft)
e2els.append(outputs[i].latency)
completed += 1
else:
actual_output_lens.append(0)
if goodput_config_dict:
valid_metrics = []
slo_values = []
if "ttft" in goodput_config_dict:
valid_metrics.append(ttfts)
slo_values.append(
goodput_config_dict["ttft"] / MILLISECONDS_TO_SECONDS_CONVERSION
)
if "tpot" in goodput_config_dict:
valid_metrics.append(all_tpots)
slo_values.append(
goodput_config_dict["tpot"] / MILLISECONDS_TO_SECONDS_CONVERSION
)
if "e2el" in goodput_config_dict:
valid_metrics.append(e2els)
slo_values.append(
goodput_config_dict["e2el"] / MILLISECONDS_TO_SECONDS_CONVERSION
)
for req_metric in zip(*valid_metrics):
is_good_req = all([s >= r for s, r in zip(slo_values, req_metric)])
if is_good_req:
good_completed += 1
if completed == 0:
warnings.warn(
"All requests failed. This is likely due to a misconfiguration "
"on the benchmark arguments.",
stacklevel=2,
)
metrics = BenchmarkMetrics(
completed=completed,
total_input=total_input,
total_output=sum(actual_output_lens),
request_throughput=completed / dur_s,
request_goodput=good_completed / dur_s,
output_throughput=sum(actual_output_lens) / dur_s,
total_token_throughput=(total_input + sum(actual_output_lens)) / dur_s,
mean_ttft_ms=np.mean(ttfts or 0)
* 1000, # ttfts is empty if streaming is not supported by backend
std_ttft_ms=np.std(ttfts or 0) * 1000,
median_ttft_ms=np.median(ttfts or 0) * 1000,
percentiles_ttft_ms=[
(p, np.percentile(ttfts or 0, p) * 1000) for p in selected_percentiles
],
mean_tpot_ms=np.mean(tpots or 0) * 1000,
std_tpot_ms=np.std(tpots or 0) * 1000,
median_tpot_ms=np.median(tpots or 0) * 1000,
percentiles_tpot_ms=[
(p, np.percentile(tpots or 0, p) * 1000) for p in selected_percentiles
],
mean_itl_ms=np.mean(itls or 0) * 1000,
std_itl_ms=np.std(itls or 0) * 1000,
median_itl_ms=np.median(itls or 0) * 1000,
percentiles_itl_ms=[
(p, np.percentile(itls or 0, p) * 1000) for p in selected_percentiles
],
mean_e2el_ms=np.mean(e2els or 0) * 1000,
std_e2el_ms=np.std(e2els or 0) * 1000,
median_e2el_ms=np.median(e2els or 0) * 1000,
percentiles_e2el_ms=[
(p, np.percentile(e2els or 0, p) * 1000) for p in selected_percentiles
],
)
return metrics, actual_output_lens
async def benchmark(
backend: str,
api_url: str,
base_url: str,
model_id: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: list[SampleRequest],
request_rate: float,
burstiness: float,
disable_tqdm: bool,
profile: bool,
selected_percentile_metrics: list[str],
selected_percentiles: list[str],
ignore_eos: bool,
max_concurrency: Optional[int],
structured_output_ratio: float,
goodput_config_dict: Optional[dict[str, float]] = None,
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS[backend]
else:
raise ValueError(f"Unknown backend: {backend}")
def prepare_extra_body(request) -> dict:
extra_body = {}
# Add the schema to the extra_body
extra_body[request.structure_type] = request.schema
return extra_body
print("Starting initial single prompt test run...")
structured_output_req_idx = random.sample(
range(len(input_requests)), int(len(input_requests) * structured_output_ratio)
)
test_request = input_requests[0]
test_req_extra_body = (
prepare_extra_body(test_request) if 0 in structured_output_req_idx else None
)
test_input = RequestFuncInput(
model=model_id,
prompt=test_request.prompt,
api_url=api_url,
prompt_len=test_request.prompt_len,
output_len=test_request.expected_output_len,
ignore_eos=ignore_eos,
extra_body=test_req_extra_body,
)
test_output = await request_func(request_func_input=test_input)
if not test_output.success:
raise ValueError(
"Initial test run failed - Please make sure benchmark arguments "
f"are correctly specified. Error: {test_output.error}"
)
else:
print("Initial test run completed. Starting main benchmark run...")
if profile:
print("Starting profiler...")
profile_input = RequestFuncInput(
model=model_id,
prompt=test_request.prompt,
api_url=base_url + "/start_profile",
prompt_len=test_request.prompt_len,
output_len=test_request.expected_output_len,
ignore_eos=ignore_eos,
extra_body=test_req_extra_body,
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler started")
distribution = "Poisson process" if burstiness == 1.0 else "Gamma distribution"
print(f"Traffic request rate: {request_rate}")
print(f"Burstiness factor: {burstiness} ({distribution})")
print(f"Maximum request concurrency: {max_concurrency}")
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
# This can be used once the minimum Python version is 3.10 or higher,
# and it will simplify the code in limited_request_func.
# semaphore = (asyncio.Semaphore(max_concurrency)
# if max_concurrency else contextlib.nullcontext())
semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None
async def limited_request_func(request_func_input, pbar):
if semaphore is None:
return await request_func(request_func_input=request_func_input, pbar=pbar)
async with semaphore:
return await request_func(request_func_input=request_func_input, pbar=pbar)
benchmark_start_time = time.perf_counter()
tasks: list[asyncio.Task] = []
expected: list[str] = []
async for i, request in get_request(input_requests, request_rate, burstiness):
extra_body = (
prepare_extra_body(request) if i in structured_output_req_idx else None
)
request_func_input = RequestFuncInput(
model=model_id,
prompt=request.prompt,
api_url=api_url,
prompt_len=request.prompt_len,
output_len=request.expected_output_len,
ignore_eos=ignore_eos,
extra_body=extra_body,
)
expected.append(request.completion)
tasks.append(
asyncio.create_task(
limited_request_func(request_func_input=request_func_input, pbar=pbar)
)
)
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
if profile:
print("Stopping profiler...")
profile_input = RequestFuncInput(
model=model_id,
prompt=test_request.prompt,
api_url=base_url + "/stop_profile",
prompt_len=test_request.prompt_len,
output_len=test_request.expected_output_len,
extra_body={test_request.structure_type: test_request.schema},
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler stopped")
if pbar is not None:
pbar.close()
benchmark_duration = time.perf_counter() - benchmark_start_time
metrics, actual_output_lens = calculate_metrics(
input_requests=input_requests,
outputs=outputs,
dur_s=benchmark_duration,
tokenizer=tokenizer,
selected_percentile_metrics=selected_percentile_metrics,
selected_percentiles=selected_percentiles,
goodput_config_dict=goodput_config_dict,
)
print("{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
print(
"{:<40} {:<10.2f}".format(
"Request throughput (req/s):", metrics.request_throughput
)
)
if goodput_config_dict:
print(
"{:<40} {:<10.2f}".format(
"Request goodput (req/s):", metrics.request_goodput
)
)
print(
"{:<40} {:<10.2f}".format(
"Output token throughput (tok/s):", metrics.output_throughput
)
)
print(
"{:<40} {:<10.2f}".format(
"Total Token throughput (tok/s):", metrics.total_token_throughput
)
)
result = {
"duration": benchmark_duration,
"completed": metrics.completed,
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"request_throughput": metrics.request_throughput,
"output_throughput": metrics.output_throughput,
"total_token_throughput": metrics.total_token_throughput,
"ttft_description": pd.Series([output.ttft for output in outputs])
.describe()
.to_dict(),
"tpot_description": pd.Series([output.tpot for output in outputs])
.describe()
.to_dict(),
"input_lens": [output.prompt_len for output in outputs],
"output_lens": actual_output_lens,
"ttfts": [output.ttft for output in outputs],
"itls": [output.itl for output in outputs],
"errors": [output.error for output in outputs],
}
ret = [
{"generated": output.generated_text, "expected": gt}
for output, gt in zip(outputs, expected)
]
def process_one_metric(
# E.g., "ttft"
metric_attribute_name: str,
# E.g., "TTFT"
metric_name: str,
# E.g., "Time to First Token"
metric_header: str,
):
# This function prints and adds statistics of the specified
# metric.
if metric_attribute_name not in selected_percentile_metrics:
return
print("{s:{c}^{n}}".format(s=metric_header, n=50, c="-"))
print(
"{:<40} {:<10.2f}".format(
f"Mean {metric_name} (ms):",
getattr(metrics, f"mean_{metric_attribute_name}_ms"),
)
)
print(
"{:<40} {:<10.2f}".format(
f"Median {metric_name} (ms):",
getattr(metrics, f"median_{metric_attribute_name}_ms"),
)
)
result[f"mean_{metric_attribute_name}_ms"] = getattr(
metrics, f"mean_{metric_attribute_name}_ms"
)
result[f"median_{metric_attribute_name}_ms"] = getattr(
metrics, f"median_{metric_attribute_name}_ms"
)
result[f"std_{metric_attribute_name}_ms"] = getattr(
metrics, f"std_{metric_attribute_name}_ms"
)
for p, value in getattr(metrics, f"percentiles_{metric_attribute_name}_ms"):
p_word = str(int(p)) if int(p) == p else str(p)
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):", value))
result[f"p{p_word}_{metric_attribute_name}_ms"] = value
process_one_metric("ttft", "TTFT", "Time to First Token")
process_one_metric("tpot", "TPOT", "Time per Output Token (excl. 1st token)")
process_one_metric("itl", "ITL", "Inter-token Latency")
process_one_metric("e2el", "E2EL", "End-to-end Latency")
print("=" * 50)
return result, ret
def evaluate(ret, args):
def _eval_correctness_json(expected, actual):
# extract json string from string using regex
import regex as re
actual = actual.replace("\n", "").replace(" ", "").strip()
try:
actual = re.search(r"\{.*\}", actual).group()
actual = json.loads(actual)
except Exception:
return False
return True
def _eval_correctness_choice(expected, actual):
return actual in args.choice
def _eval_correctness_regex(expected, actual):
import regex as re
return re.match(args.regex, actual) is not None
def _eval_correctness(expected, actual):
if args.structure_type == "guided_json":
return _eval_correctness_json(expected, actual)
elif args.structure_type == "guided_regex":
return _eval_correctness_regex(expected, actual)
elif args.structure_type == "guided_choice":
return _eval_correctness_choice(expected, actual)
else:
return None
scores = []
for res in ret:
score = _eval_correctness(res["expected"], res["generated"])
res["correctness"] = score
scores.append(score)
not_none_scores = [score for score in scores if score is not None]
return (
(sum(not_none_scores) / len(not_none_scores) * 100)
if len(not_none_scores) > 0
else None
)
def parse_goodput(slo_pairs):
goodput_config_dict = {}
try:
for slo_pair in slo_pairs:
slo_name, slo_val = slo_pair.split(":")
goodput_config_dict[slo_name] = float(slo_val)
except ValueError as err:
raise argparse.ArgumentTypeError(
"Invalid format found for service level objectives. "
'Specify service level objectives for goodput as "KEY:VALUE" '
"pairs, where the key is a metric name, and the value is a "
"number in milliseconds."
) from err
return goodput_config_dict
def check_goodput_args(args):
goodput_config_dict = {}
VALID_NAMES = ["ttft", "tpot", "e2el"]
if args.goodput:
goodput_config_dict = parse_goodput(args.goodput)
for slo_name, slo_val in goodput_config_dict.items():
if slo_name not in VALID_NAMES:
raise ValueError(
f"Invalid metric name found, {slo_name}: {slo_val}. "
"The service level objective name should be one of "
f"{str(VALID_NAMES)}. "
)
if slo_val < 0:
raise ValueError(
f"Invalid value found, {slo_name}: {slo_val}. "
"The service level objective value should be "
"non-negative."
)
return goodput_config_dict
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
backend = args.backend
model_id = args.model
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
if args.base_url is not None:
api_url = f"{args.base_url}{args.endpoint}"
base_url = f"{args.base_url}"
else:
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
base_url = f"http://{args.host}:{args.port}"
tokenizer = get_tokenizer(
tokenizer_id,
trust_remote_code=args.trust_remote_code,
tokenizer_mode=args.tokenizer_mode,
)
if args.dataset == "grammar":
args.structure_type = "guided_grammar"
elif args.dataset == "regex":
args.structure_type = "guided_regex"
elif args.dataset == "choice":
args.structure_type = "guided_choice"
else:
args.structure_type = "guided_json"
if args.no_structured_output:
args.structured_output_ratio = 0
if args.save_results:
result_file_name = f"{args.structured_output_ratio}guided"
result_file_name += f"_{backend}"
result_file_name += f"_{args.request_rate}qps"
result_file_name += f"_{args.model.split('/')[-1]}"
result_file_name += f"_{args.dataset}"
result_file_name += f"_{args.num_prompts}"
result_file_name += f"_out{args.output_len}"
result_file_name += ".txt"
else:
result_file_name = None
input_requests = sample_requests(tokenizer, args)
goodput_config_dict = check_goodput_args(args)
benchmark_result, ret = asyncio.run(
benchmark(
backend=backend,
api_url=api_url,
base_url=base_url,
model_id=model_id,
tokenizer=tokenizer,
input_requests=input_requests,
request_rate=args.request_rate,
burstiness=args.burstiness,
disable_tqdm=args.disable_tqdm,
profile=args.profile,
selected_percentile_metrics=args.percentile_metrics.split(","),
selected_percentiles=[float(p) for p in args.metric_percentiles.split(",")],
ignore_eos=args.ignore_eos,
max_concurrency=args.max_concurrency,
structured_output_ratio=args.structured_output_ratio,
goodput_config_dict=goodput_config_dict,
)
)
# Save config and results to json
score = evaluate(ret, args)
print("correct_rate(%)", score, "\n")
if args.save_results:
results = {
"backend": backend,
"model_id": model_id,
"tokenizer_id": tokenizer_id,
"num_prompts": args.num_prompts,
"request_rate": args.request_rate
if args.request_rate < float("inf")
else "inf",
"burstiness": args.burstiness,
"max_concurrency": args.max_concurrency,
"correct_rate(%)": score,
}
results = {"outputs": ret, **results, **benchmark_result}
# Save to file
if args.result_filename:
result_file_name = args.result_filename
if args.result_dir:
result_file_name = os.path.join(args.result_dir, result_file_name)
with open(result_file_name, "w", encoding="utf-8") as outfile:
json.dump(results, outfile, indent=4)
def create_argument_parser():
parser = FlexibleArgumentParser(
description="Benchmark the online serving throughput."
)
parser.add_argument(
"--backend",
type=str,
default="vllm",
choices=list(ASYNC_REQUEST_FUNCS.keys()),
)
parser.add_argument(
"--base-url",
type=str,
default=None,
help="Server or API base url if not using http host and port.",
)
# Use 127.0.0.1 here instead of localhost to force the use of ipv4
parser.add_argument("--host", type=str, default="127.0.0.1")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument(
"--endpoint",
type=str,
default="/v1/completions",
help="API endpoint.",
)
parser.add_argument(
"--dataset",
default="json",
choices=["json", "json-unique", "grammar", "regex", "choice", "xgrammar_bench"],
)
parser.add_argument(
"--json-schema-path", type=str, default=None, help="Path to json schema."
)
parser.add_argument(
"--max-concurrency",
type=int,
default=None,
help="Maximum number of concurrent requests. This can be used "
"to help simulate an environment where a higher level component "
"is enforcing a maximum number of concurrent requests. While the "
"--request-rate argument controls the rate at which requests are "
"initiated, this argument will control how many are actually allowed "
"to execute at a time. This means that when used in combination, the "
"actual request rate may be lower than specified with --request-rate, "
"if the server is not processing requests fast enough to keep up.",
)
parser.add_argument(
"--model",
type=str,
required=True,
help="Name of the model.",
)
parser.add_argument(
"--tokenizer",
type=str,
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
)
parser.add_argument(
"--tokenizer-mode",
type=str,
default="auto",
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
)
parser.add_argument(
"--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.",
)
parser.add_argument(
"--output-len",
type=int,
default=128,
help="Number of output tokens.",
)
parser.add_argument(
"--request-rate",
type=float,
default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process or gamma distribution "
"to synthesize the request arrival times.",
)
parser.add_argument(
"--burstiness",
type=float,
default=1.0,
help="Burstiness factor of the request generation. "
"Only take effect when request_rate is not inf. "
"Default value is 1, which follows Poisson process. "
"Otherwise, the request intervals follow a gamma distribution. "
"A lower burstiness value (0 < burstiness < 1) results in more "
"bursty requests. A higher burstiness value (burstiness > 1) "
"results in a more uniform arrival of requests.",
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument(
"--trust-remote-code",
action="store_true",
help="Trust remote code from huggingface",
)
parser.add_argument(
"--disable-tqdm",
action="store_true",
help="Specify to disable tqdm progress bar.",
)
parser.add_argument(
"--save-results",
action="store_true",
help="Specify to save benchmark results to a json file",
)
parser.add_argument(
"--profile",
action="store_true",
help="Use Torch Profiler. The endpoint must be launched with "
"VLLM_TORCH_PROFILER_DIR to enable profiler.",
)
parser.add_argument(
"--result-dir",
type=str,
default=None,
help="Specify directory to save benchmark json results."
"If not specified, results are saved in the current directory.",
)
parser.add_argument(
"--result-filename",
type=str,
default=None,
help="Specify the filename to save benchmark json results."
"If not specified, results will be saved in "
"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"
" format.",
)
parser.add_argument(
"--ignore-eos",
action="store_true",
help="Set ignore_eos flag when sending the benchmark request."
"Warning: ignore_eos is not supported in deepspeed_mii and tgi.",
)
parser.add_argument(
"--percentile-metrics",
type=str,
default="ttft,tpot,itl",
help="Comma-separated list of selected metrics to report percentils. "
"This argument specifies the metrics to report percentiles. "
'Allowed metric names are "ttft", "tpot", "itl", "e2el". '
'Default value is "ttft,tpot,itl".',
)
parser.add_argument(
"--metric-percentiles",
type=str,
default="99",
help="Comma-separated list of percentiles for selected metrics. "
'To report 25-th, 50-th, and 75-th percentiles, use "25,50,75". '
'Default value is "99". '
'Use "--percentile-metrics" to select metrics.',
)
parser.add_argument(
"--goodput",
nargs="+",
required=False,
help='Specify service level objectives for goodput as "KEY:VALUE" '
"pairs, where the key is a metric name, and the value is in "
'milliseconds. Multiple "KEY:VALUE" pairs can be provided, '
"separated by spaces. Allowed request level metric names are "
'"ttft", "tpot", "e2el". For more context on the definition of '
"goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 "
"and the blog: https://hao-ai-lab.github.io/blogs/distserve",
)
parser.add_argument(
"--no-structured-output",
action="store_true",
default=False,
help="Whether to disable JSON decoding or not.",
)
parser.add_argument(
"--structured-output-ratio",
type=float,
default=1.0,
help="Ratio of Structured Outputs requests",
)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
main(args)
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Benchmark offline inference throughput."""
import argparse
import dataclasses
import json
import os
import random
import time
from typing import List, Optional, Tuple
from pathlib import Path
import warnings
from typing import Any, Optional, Union
import numpy as np
import torch
import uvloop
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizerBase)
from vllm.inputs import PromptInputs
from vllm.engine.arg_utils import DEVICE_OPTIONS, AsyncEngineArgs, EngineArgs
from vllm.inputs import PromptType
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerBase
from benchmark_dataset import (
AIMODataset,
BurstGPTDataset,
ConversationDataset,
InstructCoderDataset,
RandomDataset,
SampleRequest,
ShareGPTDataset,
SonnetDataset,
VisionArenaDataset,
)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
build_async_engine_client_from_engine_args)
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
build_async_engine_client_from_engine_args,
)
from vllm.inputs import TextPrompt, TokensPrompt
from vllm.lora.request import LoRARequest
from vllm.outputs import RequestOutput
from vllm.sampling_params import BeamSearchParams
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
filtered_dataset.append((prompt, prompt_len, output_len))
return filtered_dataset
def run_vllm(
warmup_requests: List[Tuple[str, int, int]],
requests: List[Tuple[str, int, int]],
model: str,
tokenizer: str,
quantization: Optional[str],
tensor_parallel_size: int,
seed: int,
requests: list[SampleRequest],
n: int,
use_beam_search: bool,
trust_remote_code: bool,
dtype: str,
max_model_len: Optional[int],
enforce_eager: bool,
kv_cache_dtype: str,
quantization_param_path: Optional[str],
device: str,
enable_prefix_caching: bool,
enable_chunked_prefill: bool,
max_num_batched_tokens: int,
distributed_executor_backend: Optional[str],
gpu_memory_utilization: float = 0.9,
num_scheduler_steps: int = 1,
use_v2_block_manager: bool = False,
download_dir: Optional[str] = None,
load_format: str = EngineArgs.load_format,
disable_async_output_proc: bool = False,
use_new_beam_search_impl: bool = False,
) -> float:
num_iters_warmup: int,
engine_args: EngineArgs,
disable_detokenize: bool = False,
) -> tuple[float, Optional[list[RequestOutput]]]:
from vllm import LLM, SamplingParams
llm = LLM(
model=model,
tokenizer=tokenizer,
quantization=quantization,
tensor_parallel_size=tensor_parallel_size,
seed=seed,
trust_remote_code=trust_remote_code,
dtype=dtype,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
quantization_param_path=quantization_param_path,
device=device,
enable_prefix_caching=enable_prefix_caching,
download_dir=download_dir,
enable_chunked_prefill=enable_chunked_prefill,
max_num_batched_tokens=max_num_batched_tokens,
distributed_executor_backend=distributed_executor_backend,
load_format=load_format,
num_scheduler_steps=num_scheduler_steps,
use_v2_block_manager=use_v2_block_manager,
disable_async_output_proc=disable_async_output_proc,
)
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len
>= (request.prompt_len + request.expected_output_len)
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests."
)
# Add the requests to the engine.
prompts: List[str] = []
sampling_params: List[SamplingParams] = []
for prompt, _, output_len in requests:
prompts.append(prompt)
prompts: list[Union[TextPrompt, TokensPrompt]] = []
sampling_params: list[SamplingParams] = []
for request in requests:
prompts.append(
TokensPrompt(
prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data,
)
if "prompt_token_ids" in request.prompt
else TextPrompt(
prompt=request.prompt, multi_modal_data=request.multi_modal_data
)
)
sampling_params.append(
SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
temperature=1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
))
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
)
)
lora_requests: Optional[list[LoRARequest]] = None
if engine_args.enable_lora:
lora_requests = [request.lora_request for request in requests]
# warmup
warmup_prompts = []
warmup_sampling_params = []
for prompt, _, output_len in warmup_requests:
warmup_prompts.append(prompt)
warmup_sampling_params.append(
SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
))
print("Warming up...")
for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
llm.generate(warmup_prompts, warmup_sampling_params, use_tqdm=True)
warmup_sampling_params = SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=10,
)
dummy_prompt_token_ids = np.random.randint(10000, size=(1,10))
dummy_prompts: list[PromptType] = [{
"prompt_token_ids": batch
} for batch in dummy_prompt_token_ids.tolist()]
# dummy_prompt_token_ids = np.random.randint(10000,
# size=(args.num_prompts,
# args.input_len))
# dummy_inputs: List[PromptInputs] = [{
# "prompt_token_ids": batch
# } for batch in dummy_prompt_token_ids.tolist()]
# def run_to_completion():
# llm.generate(dummy_inputs,
# sampling_params=sampling_params,
# use_tqdm=False)
# print("Warming up...")
# for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
# run_to_completion()
if not use_new_beam_search_impl:
start = time.perf_counter()
llm.generate(prompts, sampling_params, use_tqdm=True)
end = time.perf_counter()
use_beam_search = False
print("Warming up...")
for _ in tqdm(range(num_iters_warmup), desc="Warmup iterations"):
if not use_beam_search:
llm.generate(dummy_prompts, sampling_params=warmup_sampling_params, use_tqdm=False)
else:
llm.beam_search(
dummy_prompts,
BeamSearchParams(
beam_width=args.n,
max_tokens=args.output_len,
ignore_eos=True,
),
)
outputs = None
if not use_beam_search:
if args.profile:
profile_dir = args.profile_result_dir
if not profile_dir:
profile_dir = Path(
"."
) / "vllm_benchmark_result" / f"latency_result_{time.time()}"
print(f"Profiling (results will be saved to '{profile_dir}')...")
with torch.profiler.profile(
activities=[torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],record_shapes=True,
on_trace_ready=torch.profiler.tensorboard_trace_handler(str(profile_dir))
) as prof:
start = time.perf_counter()
outputs = llm.generate(
prompts, sampling_params, lora_request=lora_requests, use_tqdm=True
)
end = time.perf_counter()
print('Prepare time report')
print(prof.key_averages(group_by_input_shape=True).table(sort_by="self_cuda_time_total", row_limit=-1))
else:
start = time.perf_counter()
outputs = llm.generate(
prompts, sampling_params, lora_request=lora_requests, use_tqdm=True
)
end = time.perf_counter()
else:
assert use_beam_search
prompts = [prompt for prompt, _, _ in requests]
assert lora_requests is None, "BeamSearch API does not support LoRA"
prompts = [request.prompt for request in requests]
# output_len should be the same for all requests.
output_len = requests[0][2]
for prompt, input_len, _output_len in requests:
assert _output_len == output_len
output_len = requests[0].expected_output_len
for request in requests:
assert request.expected_output_len == output_len
start = time.perf_counter()
llm.beam_search(prompts,
beam_width=n,
max_tokens=output_len,
ignore_eos=True)
llm.beam_search(
prompts,
BeamSearchParams(
beam_width=n,
max_tokens=output_len,
ignore_eos=True,
),
)
end = time.perf_counter()
return end - start
return end - start, outputs
def run_vllm_chat(
requests: list[SampleRequest],
n: int,
engine_args: EngineArgs,
disable_detokenize: bool = False,
) -> tuple[float, list[RequestOutput]]:
"""
Run vLLM chat benchmark. This function is recommended ONLY for benchmarking
multimodal models as it properly handles multimodal inputs and chat
formatting. For non-multimodal models, use run_vllm() instead.
"""
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len
>= (request.prompt_len + request.expected_output_len)
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of "
"prompt_len and expected_output_len for all requests."
)
prompts = []
sampling_params: list[SamplingParams] = []
for request in requests:
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
)
)
start = time.perf_counter()
outputs = llm.chat(prompts, sampling_params, use_tqdm=True)
end = time.perf_counter()
return end - start, outputs
async def run_vllm_async(
requests: List[Tuple[str, int, int]],
model: str,
tokenizer: str,
quantization: Optional[str],
tensor_parallel_size: int,
seed: int,
requests: list[SampleRequest],
n: int,
use_beam_search: bool,
trust_remote_code: bool,
dtype: str,
max_model_len: Optional[int],
enforce_eager: bool,
kv_cache_dtype: str,
quantization_param_path: Optional[str],
device: str,
enable_prefix_caching: bool,
enable_chunked_prefill: bool,
max_num_batched_tokens: int,
distributed_executor_backend: Optional[str],
gpu_memory_utilization: float = 0.9,
num_scheduler_steps: int = 1,
use_v2_block_manager: bool = False,
download_dir: Optional[str] = None,
load_format: str = EngineArgs.load_format,
disable_async_output_proc: bool = False,
engine_args: AsyncEngineArgs,
disable_frontend_multiprocessing: bool = False,
disable_detokenize: bool = False,
) -> float:
from vllm import SamplingParams
engine_args = AsyncEngineArgs(
model=model,
tokenizer=tokenizer,
quantization=quantization,
tensor_parallel_size=tensor_parallel_size,
seed=seed,
trust_remote_code=trust_remote_code,
dtype=dtype,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
quantization_param_path=quantization_param_path,
device=device,
enable_prefix_caching=enable_prefix_caching,
download_dir=download_dir,
enable_chunked_prefill=enable_chunked_prefill,
max_num_batched_tokens=max_num_batched_tokens,
distributed_executor_backend=distributed_executor_backend,
load_format=load_format,
num_scheduler_steps=num_scheduler_steps,
use_v2_block_manager=use_v2_block_manager,
disable_async_output_proc=disable_async_output_proc,
worker_use_ray=False,
disable_log_requests=True,
)
async with build_async_engine_client_from_engine_args(
engine_args, disable_frontend_multiprocessing) as llm:
engine_args, disable_frontend_multiprocessing
) as llm:
model_config = await llm.get_model_config()
assert all(
model_config.max_model_len
>= (request.prompt_len + request.expected_output_len)
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests."
)
# Add the requests to the engine.
prompts: List[str] = []
sampling_params: List[SamplingParams] = []
for prompt, _, output_len in requests:
prompts.append(prompt)
prompts: list[Union[TextPrompt, TokensPrompt]] = []
sampling_params: list[SamplingParams] = []
lora_requests: list[Optional[LoRARequest]] = []
for request in requests:
prompts.append(
TokensPrompt(
prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data,
)
if "prompt_token_ids" in request.prompt
else TextPrompt(
prompt=request.prompt, multi_modal_data=request.multi_modal_data
)
)
sampling_params.append(
SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
temperature=1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
))
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
)
)
lora_requests.append(request.lora_request)
generators = []
start = time.perf_counter()
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
generator = llm.generate(prompt, sp, request_id=f"test{i}")
for i, (prompt, sp, lr) in enumerate(
zip(prompts, sampling_params, lora_requests)
):
generator = llm.generate(prompt, sp, lora_request=lr, request_id=f"test{i}")
generators.append(generator)
all_gens = merge_async_iterators(*generators)
async for i, res in all_gens:
......@@ -278,17 +275,17 @@ async def run_vllm_async(
def run_hf(
requests: List[Tuple[str, int, int]],
requests: list[SampleRequest],
model: str,
tokenizer: PreTrainedTokenizerBase,
n: int,
use_beam_search: bool,
max_batch_size: int,
trust_remote_code: bool,
disable_detokenize: bool = False,
) -> float:
assert not use_beam_search
llm = AutoModelForCausalLM.from_pretrained(
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code
)
if llm.config.model_type == "llama":
# To enable padding in the HF backend.
tokenizer.pad_token = tokenizer.eos_token
......@@ -296,37 +293,42 @@ def run_hf(
pbar = tqdm(total=len(requests))
start = time.perf_counter()
batch: List[str] = []
batch: list[str] = []
max_prompt_len = 0
max_output_len = 0
for i in range(len(requests)):
prompt, prompt_len, output_len = requests[i]
prompt = requests[i].prompt
prompt_len = requests[i].prompt_len
output_len = requests[i].expected_output_len
# Add the prompt to the batch.
batch.append(prompt)
max_prompt_len = max(max_prompt_len, prompt_len)
max_output_len = max(max_output_len, output_len)
if len(batch) < max_batch_size and i != len(requests) - 1:
# Check if we can add more requests to the batch.
_, next_prompt_len, next_output_len = requests[i + 1]
if (max(max_prompt_len, next_prompt_len) +
max(max_output_len, next_output_len)) <= 2048:
next_prompt_len = requests[i + 1].prompt_len
next_output_len = requests[i + 1].expected_output_len
if (
max(max_prompt_len, next_prompt_len)
+ max(max_output_len, next_output_len)
) <= 2048:
# We can add more requests to the batch.
continue
# Generate the sequences.
input_ids = tokenizer(batch, return_tensors="pt",
padding=True).input_ids
input_ids = tokenizer(batch, return_tensors="pt", padding=True).input_ids
llm_outputs = llm.generate(
input_ids=input_ids.cuda(),
do_sample=not use_beam_search,
do_sample=True,
num_return_sequences=n,
temperature=1.0,
top_p=1.0,
use_cache=True,
max_new_tokens=max_output_len,
)
# Include the decoding time.
tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
if not disable_detokenize:
# Include the decoding time.
tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
pbar.update(len(batch))
# Clear the batch.
......@@ -338,14 +340,15 @@ def run_hf(
def run_mii(
requests: List[Tuple[str, int, int]],
requests: list[SampleRequest],
model: str,
tensor_parallel_size: int,
output_len: int,
) -> float:
from mii import client, serve
llm = serve(model, tensor_parallel=tensor_parallel_size)
prompts = [prompt for prompt, _, _ in requests]
prompts = [request.prompt for request in requests]
start = time.perf_counter()
llm.generate(prompts, max_new_tokens=output_len)
......@@ -355,80 +358,171 @@ def run_mii(
return end - start
def save_to_pytorch_benchmark_format(
args: argparse.Namespace, results: dict[str, Any]
) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={
"requests_per_second": [results["requests_per_second"]],
"tokens_per_second": [results["tokens_per_second"]],
},
extra_info={
k: results[k] for k in ["elapsed_time", "num_requests", "total_num_tokens"]
},
)
if pt_records:
# Don't use json suffix here as we don't want CI to pick it up
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
write_to_json(pt_file, pt_records)
def get_requests(args, tokenizer):
# Common parameters for all dataset types.
common_kwargs = {
"dataset_path": args.dataset_path,
"random_seed": args.seed,
}
sample_kwargs = {
"tokenizer": tokenizer,
"lora_path": args.lora_path,
"max_loras": args.max_loras,
"num_requests": args.num_prompts,
"input_len": args.input_len,
"output_len": args.output_len,
}
if args.dataset_path is None or args.dataset_name == "random":
sample_kwargs["range_ratio"] = args.random_range_ratio
sample_kwargs["prefix_len"] = args.prefix_len
dataset_cls = RandomDataset
elif args.dataset_name == "sharegpt":
dataset_cls = ShareGPTDataset
if args.backend == "vllm-chat":
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_name == "sonnet":
assert tokenizer.chat_template or tokenizer.default_chat_template, (
"Tokenizer/model must have chat template for sonnet dataset."
)
dataset_cls = SonnetDataset
sample_kwargs["prefix_len"] = args.prefix_len
sample_kwargs["return_prompt_formatted"] = True
elif args.dataset_name == "burstgpt":
dataset_cls = BurstGPTDataset
elif args.dataset_name == "hf":
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = VisionArenaDataset
common_kwargs["dataset_subset"] = None
common_kwargs["dataset_split"] = "train"
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = InstructCoderDataset
common_kwargs["dataset_split"] = "train"
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = ConversationDataset
common_kwargs["dataset_subset"] = args.hf_subset
common_kwargs["dataset_split"] = args.hf_split
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
dataset_cls = AIMODataset
common_kwargs["dataset_subset"] = None
common_kwargs["dataset_split"] = "train"
else:
raise ValueError(f"Unknown dataset name: {args.dataset_name}")
# Remove None values
sample_kwargs = {k: v for k, v in sample_kwargs.items() if v is not None}
return dataset_cls(**common_kwargs).sample(**sample_kwargs)
def main(args: argparse.Namespace):
if args.seed is None:
args.seed = 0
print(args)
random.seed(args.seed)
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
warmup_prompt = "hi" * 10
warmup_requests = [(warmup_prompt, 10, 10)
for _ in range(1)]
if args.dataset is None:
# Synthesize a prompt with the given input length.
prompt = "hi" * (args.input_len - 1)
requests = [(prompt, args.input_len, args.output_len)
for _ in range(args.num_prompts)]
else:
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
args.output_len)
args.tokenizer, trust_remote_code=args.trust_remote_code
)
requests = get_requests(args, tokenizer)
is_multi_modal = any(request.multi_modal_data is not None for request in requests)
request_outputs: Optional[list[RequestOutput]] = None
if args.backend == "vllm":
if args.async_engine:
run_args = [
requests, args.model, args.tokenizer, args.quantization,
args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype, args.max_model_len,
args.enforce_eager, args.kv_cache_dtype,
args.quantization_param_path, args.device,
args.enable_prefix_caching, args.enable_chunked_prefill,
args.max_num_batched_tokens, args.distributed_executor_backend,
args.gpu_memory_utilization, args.num_scheduler_steps,
args.use_v2_block_manager, args.download_dir, args.load_format,
args.disable_async_output_proc
]
else:
run_args = [
warmup_requests, requests, args.model, args.tokenizer, args.quantization,
args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype, args.max_model_len,
args.enforce_eager, args.kv_cache_dtype,
args.quantization_param_path, args.device,
args.enable_prefix_caching, args.enable_chunked_prefill,
args.max_num_batched_tokens, args.distributed_executor_backend,
args.gpu_memory_utilization, args.num_scheduler_steps,
args.use_v2_block_manager, args.download_dir, args.load_format,
args.disable_async_output_proc
]
if args.async_engine:
run_args.append(args.disable_frontend_multiprocessing)
elapsed_time = uvloop.run(run_vllm_async(*run_args))
elapsed_time = uvloop.run(
run_vllm_async(
requests,
args.n,
AsyncEngineArgs.from_cli_args(args),
args.disable_frontend_multiprocessing,
args.disable_detokenize,
)
)
else:
elapsed_time = run_vllm(*run_args, args.use_new_beam_search_impl)
elapsed_time, request_outputs = run_vllm(
requests,
args.n,
args.num_iters_warmup,
EngineArgs.from_cli_args(args),
args.disable_detokenize,
)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
args.use_beam_search, args.hf_max_batch_size,
args.trust_remote_code)
elapsed_time = run_hf(
requests,
args.model,
tokenizer,
args.n,
args.hf_max_batch_size,
args.trust_remote_code,
args.disable_detokenize,
)
elif args.backend == "mii":
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
args.output_len)
elapsed_time = run_mii(
requests, args.model, args.tensor_parallel_size, args.output_len
)
elif args.backend == "vllm-chat":
elapsed_time, request_outputs = run_vllm_chat(
requests, args.n, EngineArgs.from_cli_args(args), args.disable_detokenize
)
else:
raise ValueError(f"Unknown backend: {args.backend}")
total_num_tokens = sum(prompt_len + output_len
for _, prompt_len, output_len in requests)
if args.dataset is None:
total_out_tokens = args.output_len * args.num_prompts
if request_outputs:
# Note: with the vllm and vllm-chat backends,
# we have request_outputs, which we use to count tokens.
total_prompt_tokens = 0
total_output_tokens = 0
for ro in request_outputs:
if not isinstance(ro, RequestOutput):
continue
total_prompt_tokens += (
len(ro.prompt_token_ids) if ro.prompt_token_ids else 0
)
total_output_tokens += sum(len(o.token_ids) for o in ro.outputs if o)
total_num_tokens = total_prompt_tokens + total_output_tokens
else:
total_out_tokens = sum(output_len for _, _, output_len in requests)
print(f"Latency: {elapsed_time:.2f} s")
print(f"All Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} tokens/s")
print(f"Generate Throughput: {total_out_tokens / elapsed_time:.2f} tokens/s")
total_num_tokens = sum(r.prompt_len + r.expected_output_len for r in requests)
total_output_tokens = sum(r.expected_output_len for r in requests)
total_prompt_tokens = total_num_tokens - total_output_tokens
if is_multi_modal and args.backend != "vllm-chat":
print(
"\033[91mWARNING\033[0m: Multi-modal request with "
f"{args.backend} backend detected. The "
"following metrics are not accurate because image tokens are not"
" counted. See vllm-project/vllm/issues/9778 for details."
)
# TODO(vllm-project/vllm/issues/9778): Count multi-modal token length.
# vllm-chat backend counts the image tokens now
print(f"Latency: {elapsed_time:.2f} s")
print(
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
f"{total_output_tokens / elapsed_time:.2f} output tokens/s"
)
print(f"Total num prompt tokens: {total_prompt_tokens}")
print(f"Total num output tokens: {total_output_tokens}")
# Output JSON results if specified
if args.output_json:
......@@ -441,205 +535,265 @@ def main(args: argparse.Namespace):
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
save_to_pytorch_benchmark_format(args, results)
if __name__ == "__main__":
def validate_args(args):
"""
Validate command-line arguments.
"""
# === Deprecation and Defaulting ===
if args.dataset is not None:
warnings.warn(
"The '--dataset' argument will be deprecated in the next release. "
"Please use '--dataset-name' and '--dataset-path' instead.",
stacklevel=2,
)
args.dataset_path = args.dataset
if not getattr(args, "tokenizer", None):
args.tokenizer = args.model
# === Backend Validation ===
valid_backends = {"vllm", "hf", "mii", "vllm-chat"}
if args.backend not in valid_backends:
raise ValueError(f"Unsupported backend: {args.backend}")
# === Dataset Configuration ===
if not args.dataset and not args.dataset_path:
print("When dataset path is not set, it will default to random dataset")
args.dataset_name = "random"
if args.input_len is None:
raise ValueError("input_len must be provided for a random dataset")
# === Dataset Name Specific Checks ===
# --hf-subset and --hf-split: only used
# when dataset_name is 'hf'
if args.dataset_name != "hf" and (
getattr(args, "hf_subset", None) is not None
or getattr(args, "hf_split", None) is not None
):
warnings.warn(
"--hf-subset and --hf-split will be ignored \
since --dataset-name is not 'hf'.",
stacklevel=2,
)
elif args.dataset_name == "hf":
if args.dataset_path in (
VisionArenaDataset.SUPPORTED_DATASET_PATHS.keys()
| ConversationDataset.SUPPORTED_DATASET_PATHS
):
assert args.backend == "vllm-chat", (
f"{args.dataset_path} needs to use vllm-chat as the backend."
) # noqa: E501
elif args.dataset_path in (
InstructCoderDataset.SUPPORTED_DATASET_PATHS
| AIMODataset.SUPPORTED_DATASET_PATHS
):
assert args.backend == "vllm", (
f"{args.dataset_path} needs to use vllm as the backend."
) # noqa: E501
else:
raise ValueError(f"{args.dataset_path} is not supported by hf dataset.")
# --random-range-ratio: only used when dataset_name is 'random'
if args.dataset_name != "random" and args.random_range_ratio is not None:
warnings.warn(
"--random-range-ratio will be ignored since \
--dataset-name is not 'random'.",
stacklevel=2,
)
# --prefix-len: only used when dataset_name is 'random', 'sonnet', or not
# set.
if (
args.dataset_name not in {"random", "sonnet", None}
and args.prefix_len is not None
):
warnings.warn(
"--prefix-len will be ignored since --dataset-name\
is not 'random', 'sonnet', or not set.",
stacklevel=2,
)
# === LoRA Settings ===
if getattr(args, "enable_lora", False) and args.backend != "vllm":
raise ValueError("LoRA benchmarking is only supported for vLLM backend")
if getattr(args, "enable_lora", False) and args.lora_path is None:
raise ValueError("LoRA path must be provided when enable_lora is True")
# === Backend-specific Validations ===
if args.backend == "hf" and args.hf_max_batch_size is None:
raise ValueError("HF max batch size is required for HF backend")
if args.backend != "hf" and args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
if (
args.backend in {"hf", "mii"}
and getattr(args, "quantization", None) is not None
):
raise ValueError("Quantization is only for vLLM backend.")
if args.backend == "mii" and args.dtype != "auto":
raise ValueError("dtype must be auto for MII backend.")
if args.backend == "mii" and args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.backend == "mii" and args.tokenizer != args.model:
raise ValueError("Tokenizer must be the same as the model for MII backend.")
# --data-parallel is not supported currently.
# https://github.com/vllm-project/vllm/issues/16222
if args.data_parallel_size > 1:
raise ValueError(
"Data parallel is not supported in offline benchmark, \
please use benchmark serving instead"
)
def create_argument_parser():
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf", "mii"],
default="vllm")
parser.add_argument("--dataset",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument("--input-len",
type=int,
default=None,
help="Input prompt length for each request")
parser.add_argument("--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--model", type=str, default="facebook/opt-125m")
parser.add_argument("--tokenizer", type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=[*QUANTIZATION_METHODS, None],
default=None)
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument('--num-iters-warmup',
type=int,
default=1,
help='Number of iterations to run for warmup.')
parser.add_argument("--use-new-beam-search-impl", action="store_true")
parser.add_argument("--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--hf-max-batch-size",
type=int,
default=None,
help="Maximum batch size for HF backend.")
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
parser.add_argument(
'--max-model-len',
type=int,
default=None,
help='Maximum length of a sequence (including prompt and output). '
'If None, will be derived from the model.')
parser.add_argument(
'--dtype',
"--backend",
type=str,
default='auto',
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument('--gpu-memory-utilization',
type=float,
default=0.9,
help='the fraction of GPU memory to be used for '
'the model executor, which can range from 0 to 1.'
'If unspecified, will use the default value of 0.9.')
parser.add_argument("--enforce-eager",
action="store_true",
help="enforce eager execution")
choices=["vllm", "hf", "mii", "vllm-chat"],
default="vllm",
)
parser.add_argument(
'--kv-cache-dtype',
"--dataset-name",
type=str,
choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'],
default="auto",
help='Data type for kv cache storage. If "auto", will use model '
'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. '
'ROCm (hcu) supports fp8 (=fp8_e4m3)')
choices=["sharegpt", "random", "sonnet", "burstgpt", "hf"],
help="Name of the dataset to benchmark on.",
default="sharegpt",
)
parser.add_argument(
'--quantization-param-path',
"--dataset",
type=str,
default=None,
help='Path to the JSON file containing the KV cache scaling factors. '
'This should generally be supplied, when KV cache dtype is FP8. '
'Otherwise, KV cache scaling factors default to 1.0, which may cause '
'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
'cuda version greater than 11.8. On ROCm (hcu), FP8_E4M3 is '
'instead supported for common inference criteria.')
parser.add_argument("--device",
type=str,
default="auto",
choices=DEVICE_OPTIONS,
help='device type for vLLM execution')
help="Path to the ShareGPT dataset, will be deprecated in\
the next release. The dataset is expected to "
"be a json in form of list[dict[..., conversations: "
"list[dict[..., value: <prompt_or_response>]]]]",
)
parser.add_argument(
"--dataset-path", type=str, default=None, help="Path to the dataset"
)
parser.add_argument(
"--input-len",
type=int,
default=None,
help="Input prompt length for each request",
)
parser.add_argument(
"--num-scheduler-steps",
"--output-len",
type=int,
default=1,
help="Maximum number of forward steps per scheduler call.")
parser.add_argument("--use-v2-block-manager",
action='store_true',
help="Enable block manager v2.")
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.",
)
parser.add_argument(
"--n", type=int, default=1, help="Number of generated sequences per prompt."
)
parser.add_argument(
"--num-iters-warmup", type=int, default=1, help="Number of iterations to run for warmup."
)
parser.add_argument(
"--num-prompts", type=int, default=1000, help="Number of prompts to process."
)
parser.add_argument(
"--enable-prefix-caching",
'--profile',
action='store_true',
help="Enable automatic prefix caching for vLLM backend.")
parser.add_argument("--enable-chunked-prefill",
action='store_true',
help="enable chunked prefill for vLLM backend.")
parser.add_argument('--max-num-batched-tokens',
type=int,
default=None,
help='maximum number of batched tokens per '
'iteration')
parser.add_argument('--download-dir',
type=str,
default=None,
help='directory to download and load the weights, '
'default to the default cache dir of huggingface')
help='profile the generation process of a single batch')
parser.add_argument(
'--output-json',
'--profile-result-dir',
type=str,
default=None,
help='Path to save the throughput results in JSON format.')
help=('path to save the pytorch profiler output. Can be visualized '
'with ui.perfetto.dev or Tensorboard.'))
parser.add_argument(
'--distributed-executor-backend',
choices=['ray', 'mp'],
"--hf-max-batch-size",
type=int,
default=None,
help='Backend to use for distributed serving. When more than 1 GPU '
'is used, will be automatically set to "ray" if installed '
'or "mp" (multiprocessing) otherwise.')
help="Maximum batch size for HF backend.",
)
parser.add_argument(
'--load-format',
"--output-json",
type=str,
default=EngineArgs.load_format,
choices=[
'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer',
'bitsandbytes'
],
help='The format of the model weights to load.\n\n'
'* "auto" will try to load the weights in the safetensors format '
'and fall back to the pytorch bin format if safetensors format '
'is not available.\n'
'* "pt" will load the weights in the pytorch bin format.\n'
'* "safetensors" will load the weights in the safetensors format.\n'
'* "npcache" will load the weights in pytorch format and store '
'a numpy cache to speed up the loading.\n'
'* "dummy" will initialize the weights with random values, '
'which is mainly for profiling.\n'
'* "tensorizer" will load the weights using tensorizer from '
'CoreWeave. See the Tensorize vLLM Model script in the Examples'
'section for more information.\n'
'* "bitsandbytes" will load the weights using bitsandbytes '
'quantization.\n')
default=None,
help="Path to save the throughput results in JSON format.",
)
parser.add_argument(
"--disable-async-output-proc",
action='store_true',
"--async-engine",
action="store_true",
default=False,
help="Disable async output processor for vLLM backend.")
parser.add_argument("--async-engine",
action='store_true',
default=False,
help="Use vLLM async engine rather than LLM class.")
parser.add_argument("--disable-frontend-multiprocessing",
action='store_true',
default=False,
help="Disable decoupled async engine frontend.")
help="Use vLLM async engine rather than LLM class.",
)
parser.add_argument(
"--disable-frontend-multiprocessing",
action="store_true",
default=False,
help="Disable decoupled async engine frontend.",
)
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=(
"Do not detokenize the response (i.e. do not include "
"detokenization time in the measurement)"
),
)
# LoRA
parser.add_argument(
"--lora-path",
type=str,
default=None,
help="Path to the LoRA adapters to use. This can be an absolute path, "
"a relative path, or a Hugging Face model identifier.",
)
parser.add_argument(
"--prefix-len",
type=int,
default=None,
help=f"Number of prefix tokens to be used in RandomDataset "
"and SonnetDataset. For RandomDataset, the total input "
"length is the sum of prefix-len (default: "
f"{RandomDataset.DEFAULT_PREFIX_LEN}) and a random context length "
"sampled from [input_len * (1 - range_ratio), "
"input_len * (1 + range_ratio)]. For SonnetDataset, "
f"prefix_len (default: {SonnetDataset.DEFAULT_PREFIX_LEN}) "
"controls how much of the input is fixed lines versus "
"random lines, but the total input length remains approximately "
"input_len tokens.",
)
# random dataset
parser.add_argument(
"--random-range-ratio",
type=float,
default=None,
help=f"Range ratio (default : {RandomDataset.DEFAULT_RANGE_RATIO}) "
"for sampling input/output length, "
"used only for RandomDataset. Must be in the range [0, 1) to "
"define a symmetric sampling range "
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
)
# hf dtaset
parser.add_argument(
"--hf-subset", type=str, default=None, help="Subset of the HF dataset."
)
parser.add_argument(
"--hf-split", type=str, default=None, help="Split of the HF dataset."
)
parser = AsyncEngineArgs.add_cli_args(parser)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
if args.dataset is None:
assert args.input_len is not None
assert args.output_len is not None
else:
assert args.input_len is None
if args.backend == "vllm":
if args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
elif args.backend == "hf":
if args.hf_max_batch_size is None:
raise ValueError("HF max batch size is required for HF backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
elif args.backend == "mii":
if args.dtype != "auto":
raise ValueError("dtype must be auto for MII backend.")
if args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.use_beam_search:
raise ValueError("Beam search is not supported for MII backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
if args.tokenizer != args.model:
raise ValueError("Tokenizer must be the same as the model for MII "
"backend.")
validate_args(args)
main(args)
\ No newline at end of file
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import json
import math
import os
from typing import Any
def convert_to_pytorch_benchmark_format(
args: argparse.Namespace, metrics: dict[str, list], extra_info: dict[str, Any]
) -> list:
"""
Save the benchmark results in the format used by PyTorch OSS benchmark with
on metric per record
https://github.com/pytorch/pytorch/wiki/How-to-integrate-with-PyTorch-OSS-benchmark-database
"""
records = []
if not os.environ.get("SAVE_TO_PYTORCH_BENCHMARK_FORMAT", False):
return records
for name, benchmark_values in metrics.items():
record = {
"benchmark": {
"name": "vLLM benchmark",
"extra_info": {
"args": vars(args),
},
},
"model": {
"name": args.model,
},
"metric": {
"name": name,
"benchmark_values": benchmark_values,
"extra_info": extra_info,
},
}
tp = record["benchmark"]["extra_info"]["args"].get("tensor_parallel_size")
# Save tensor_parallel_size parameter if it's part of the metadata
if not tp and "tensor_parallel_size" in extra_info:
record["benchmark"]["extra_info"]["args"]["tensor_parallel_size"] = (
extra_info["tensor_parallel_size"]
)
records.append(record)
return records
class InfEncoder(json.JSONEncoder):
def clear_inf(self, o: Any):
if isinstance(o, dict):
return {k: self.clear_inf(v) for k, v in o.items()}
elif isinstance(o, list):
return [self.clear_inf(v) for v in o]
elif isinstance(o, float) and math.isinf(o):
return "inf"
return o
def iterencode(self, o: Any, *args, **kwargs) -> Any:
return super().iterencode(self.clear_inf(o), *args, **kwargs)
def write_to_json(filename: str, records: list) -> None:
with open(filename, "w") as f:
json.dump(
records,
f,
cls=InfEncoder,
default=lambda o: f"<{type(o).__name__} object is not JSON serializable>",
)
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy
import itertools
import pickle as pkl
import time
from collections.abc import Iterable
from typing import Callable
import torch
import torch.utils.benchmark as TBenchmark
from torch.utils.benchmark import Measurement as TMeasurement
from utils import make_rand_sparse_tensors
from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
DEFAULT_TP_SIZES = [1]
# bench
def bench_fn(
label: str, sub_label: str, description: str, fn: Callable, *args, **kwargs
) -> TMeasurement:
min_run_time = 1
globals = {
"args": args,
"kwargs": kwargs,
"fn": fn,
}
return TBenchmark.Timer(
stmt="fn(*args, **kwargs)",
globals=globals,
label=label,
sub_label=sub_label,
description=description,
).blocked_autorange(min_run_time=min_run_time)
def bench_int8(
dtype: torch.dtype, m: int, k: int, n: int, label: str, sub_label: str
) -> Iterable[TMeasurement]:
assert dtype == torch.int8
b_compressed, e, a, b = make_rand_sparse_tensors(torch.int8, m, n, k)
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
out = ops.cutlass_scaled_sparse_mm(
a, b_compressed, e, scale_a, scale_b, torch.bfloat16
)
out_ref = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16)
if not torch.allclose(out, out_ref):
print("Incorrect results")
print(out)
print(out_ref)
else:
print("Correct results")
timers = []
# pytorch impl - bfloat16
timers.append(
bench_fn(
label,
sub_label,
"pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm,
a.to(dtype=torch.bfloat16),
b.to(dtype=torch.bfloat16),
)
)
# pytorch impl - float16
timers.append(
bench_fn(
label,
sub_label,
"pytorch_fp16_fp16_fp16_matmul-no-scales",
torch.mm,
a.to(dtype=torch.float16),
b.to(dtype=torch.float16),
)
)
# cutlass impl
timers.append(
bench_fn(
label,
sub_label,
"cutlass_i8_i8_bf16_scaled_mm",
ops.cutlass_scaled_mm,
a,
b,
scale_a,
scale_b,
torch.bfloat16,
)
)
# cutlass with bias
timers.append(
bench_fn(
label,
sub_label,
"cutlass_i8_i8_bf16_scaled_mm_bias",
ops.cutlass_scaled_mm,
a,
b,
scale_a,
scale_b,
torch.bfloat16,
bias,
)
)
# cutlass sparse impl
timers.append(
bench_fn(
label,
sub_label,
"cutlass_i8_i8_bf16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.bfloat16,
)
)
# cutlass sparse with bias
timers.append(
bench_fn(
label,
sub_label,
"cutlass_i8_i8_bf16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.bfloat16,
bias,
)
)
return timers
def bench_fp8(
dtype: torch.dtype, m: int, k: int, n: int, label: str, sub_label: str
) -> Iterable[TMeasurement]:
assert dtype == torch.float8_e4m3fn
b_compressed, e, a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, m, n, k)
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
out = ops.cutlass_scaled_sparse_mm(
a, b_compressed, e, scale_a, scale_b, torch.bfloat16
)
out_ref = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16)
if not torch.allclose(out, out_ref):
print("Incorrect results")
print(out)
print(out_ref)
else:
print("Correct results")
timers = []
# pytorch impl w. bf16
timers.append(
bench_fn(
label,
sub_label,
"pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm,
a.to(dtype=torch.bfloat16, device="cuda"),
b.to(dtype=torch.bfloat16, device="cuda"),
)
)
# pytorch impl: bf16 output, without fp8 fast accum
timers.append(
bench_fn(
label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16,
)
)
# pytorch impl: bf16 output, with fp8 fast accum
timers.append(
bench_fn(
label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16,
use_fast_accum=True,
)
)
# pytorch impl: fp16 output, without fp8 fast accum
timers.append(
bench_fn(
label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16,
)
)
# pytorch impl: fp16 output, with fp8 fast accum
timers.append(
bench_fn(
label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16,
use_fast_accum=True,
)
)
# cutlass impl: bf16 output
timers.append(
bench_fn(
label,
sub_label,
"cutlass_fp8_fp8_bf16_scaled_mm",
ops.cutlass_scaled_mm,
a,
b,
scale_a,
scale_b,
torch.bfloat16,
)
)
# cutlass impl: bf16 output
timers.append(
bench_fn(
label,
sub_label,
"cutlass_fp8_fp8_bf16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.bfloat16,
)
)
# cutlass impl: fp16 output
timers.append(
bench_fn(
label,
sub_label,
"cutlass_fp8_fp8_fp16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.float16,
)
)
# cutlass impl: bf16 output, with bias
timers.append(
bench_fn(
label,
sub_label,
"cutlass_fp8_fp8_bf16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.bfloat16,
bias,
)
)
# cutlass impl: fp16 output, with bias
timers.append(
bench_fn(
label,
sub_label,
"cutlass_fp8_fp8_fp16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.float16,
bias.to(dtype=torch.float16),
)
)
return timers
def bench(
dtype: torch.dtype, m: int, k: int, n: int, label: str, sub_label: str
) -> Iterable[TMeasurement]:
if dtype == torch.int8:
return bench_int8(dtype, m, k, n, label, sub_label)
if dtype == torch.float8_e4m3fn:
return bench_fp8(dtype, m, k, n, label, sub_label)
raise ValueError("unsupported type")
# runner
def print_timers(timers: Iterable[TMeasurement]):
compare = TBenchmark.Compare(timers)
compare.print()
def run(
dtype: torch.dtype, MKNs: Iterable[tuple[int, int, int]]
) -> Iterable[TMeasurement]:
results = []
for m, k, n in MKNs:
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm", f"MKN=({m}x{k}x{n})")
print_timers(timers)
results.extend(timers)
return results
# output makers
def make_output(
data: Iterable[TMeasurement],
MKNs: Iterable[tuple[int, int, int]],
base_description: str,
timestamp=None,
):
print(f"== All Results {base_description} ====")
print_timers(data)
# pickle all the results
timestamp = int(time.time()) if timestamp is None else timestamp
with open(f"{base_description}-{timestamp}.pkl", "wb") as f:
pkl.dump(data, f)
# argparse runners
def run_square_bench(args):
dim_sizes = list(range(args.dim_start, args.dim_end + 1, args.dim_increment))
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
data = run(args.dtype, MKNs)
make_output(data, MKNs, f"square_bench-{args.dtype}")
def run_range_bench(args):
dim_sizes = list(range(args.dim_start, args.dim_end, args.dim_increment))
n = len(dim_sizes)
Ms = [args.m_constant] * n if args.m_constant is not None else dim_sizes
Ks = [args.k_constant] * n if args.k_constant is not None else dim_sizes
Ns = [args.n_constant] * n if args.n_constant is not None else dim_sizes
MKNs = list(zip(Ms, Ks, Ns))
data = run(args.dtype, MKNs)
make_output(data, MKNs, f"range_bench-{args.dtype}")
def run_model_bench(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
def model_shapes(model_name: str, tp_size: int) -> list[tuple[int, int]]:
KNs = []
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model_name]):
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
KNs.append(KN)
return KNs
model_bench_data = []
models_tps = list(itertools.product(args.models, args.tp_sizes))
for model, tp_size in models_tps:
Ms = args.batch_sizes
KNs = model_shapes(model, tp_size)
MKNs = []
for m in Ms:
for k, n in KNs:
MKNs.append((m, k, n))
data = run(args.dtype, MKNs)
model_bench_data.append(data)
# Print all results
for data, model_tp in zip(model_bench_data, models_tps):
model, tp_size = model_tp
print(f"== Results {args.dtype} {model}-TP{tp_size} ====")
print_timers(data)
timestamp = int(time.time())
all_data = []
for d in model_bench_data:
all_data.extend(d)
# pickle all data
with open(f"model_bench-{args.dtype}-{timestamp}.pkl", "wb") as f:
pkl.dump(all_data, f)
if __name__ == "__main__":
def to_torch_dtype(dt):
if dt == "int8":
return torch.int8
if dt == "fp8":
return torch.float8_e4m3fn
raise ValueError("unsupported dtype")
parser = FlexibleArgumentParser(
description="""
Benchmark Cutlass GEMM.
To run square GEMMs:
python3 ./benchmarks/cutlass_benchmarks/sparse_benchmarks.py --dtype fp8 square_bench --dim-start 128 --dim-end 512 --dim-increment 64
To run constant N and K and sweep M:
python3 ./benchmarks/cutlass_benchmarks/sparse_benchmarks.py --dtype fp8 range_bench --dim-start 128 --dim-end 512 --dim-increment 64 --n-constant 16384 --k-constant 16384
To run dimensions from a model:
python3 ./benchmarks/cutlass_benchmarks/sparse_benchmarks.py --dtype fp8 model_bench --models meta-llama/Llama-2-7b-hf --batch-sizes 16 --tp-sizes 1
Output:
- a .pkl file, that is a list of raw torch.benchmark.utils.Measurements for the pytorch and cutlass implementations for the various GEMMs.
""", # noqa: E501
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"--dtype",
type=to_torch_dtype,
required=True,
help="Available options are ['int8', 'fp8']",
)
subparsers = parser.add_subparsers(dest="cmd")
square_parser = subparsers.add_parser("square_bench")
square_parser.add_argument("--dim-start", type=int, required=True)
square_parser.add_argument("--dim-end", type=int, required=True)
square_parser.add_argument("--dim-increment", type=int, required=True)
square_parser.set_defaults(func=run_square_bench)
range_parser = subparsers.add_parser("range_bench")
range_parser.add_argument("--dim-start", type=int, required=True)
range_parser.add_argument("--dim-end", type=int, required=True)
range_parser.add_argument("--dim-increment", type=int, required=True)
range_parser.add_argument("--m-constant", type=int, default=None)
range_parser.add_argument("--n-constant", type=int, default=None)
range_parser.add_argument("--k-constant", type=int, default=None)
range_parser.set_defaults(func=run_range_bench)
model_parser = subparsers.add_parser("model_bench")
model_parser.add_argument(
"--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys(),
)
model_parser.add_argument(
"--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES
)
model_parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
model_parser.set_defaults(func=run_model_bench)
args = parser.parse_args()
args.func(args)
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Cutlass bench utils
from collections.abc import Iterable
import torch
import vllm._custom_ops as ops
def to_fp8(tensor: torch.Tensor) -> torch.Tensor:
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(min=finfo.min, max=finfo.max)).to(
dtype=torch.float8_e4m3fn
)
def to_int8(tensor: torch.Tensor) -> torch.Tensor:
return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8)
def to_bf16(tensor: torch.Tensor) -> torch.Tensor:
return tensor.to(dtype=torch.bfloat16)
def to_fp16(tensor: torch.Tensor) -> torch.Tensor:
return tensor.to(dtype=torch.float16)
def make_rand_tensors(
dtype: torch.dtype, m: int, n: int, k: int
) -> tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device="cuda") * 5
b = torch.randn((n, k), device="cuda").t() * 5
if dtype == torch.int8:
return to_int8(a), to_int8(b)
if dtype == torch.float8_e4m3fn:
return to_fp8(a), to_fp8(b)
raise ValueError("unsupported dtype")
def prune_to_2_4(tensor):
# Reshape tensor to [N, 4] where N is number of groups of 4
original_shape = tensor.shape
reshaped = tensor.reshape(-1, 4)
# Get indices of top 2 absolute values in each group of 4
_, indices = torch.topk(torch.abs(reshaped), k=2, dim=1)
# Create binary mask
mask = torch.zeros_like(reshaped)
mask.scatter_(dim=1, index=indices, src=torch.ones_like(indices, dtype=mask.dtype))
# Apply mask and reshape back
pruned = reshaped * mask
# Turn all -0.0 to 0.0
pruned[pruned == -0.0] = 0.0
return pruned.reshape(original_shape)
def make_rand_sparse_tensors(
dtype: torch.dtype, m: int, n: int, k: int
) -> tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device="cuda") * 5
b = torch.randn((n, k), device="cuda").t() * 5
b = prune_to_2_4(b.t()).t()
if dtype == torch.int8:
a, b = to_int8(a), to_int8(b)
elif dtype == torch.float8_e4m3fn:
a, b = to_fp8(a), to_fp8(b)
elif dtype == torch.float16:
a, b = to_fp16(a), to_fp16(b)
elif dtype == torch.bfloat16:
a, b = to_bf16(a), to_bf16(b)
else:
raise ValueError("unsupported dtype")
b_compressed, e = ops.cutlass_sparse_compress(b.t())
# Compressed B, Metadata, Original A, B
return b_compressed, e, a, b
def make_n_rand_sparse_tensors(
num_tensors: int, dtype: torch.dtype, m: int, n: int, k: int
) -> tuple[Iterable[torch.Tensor], Iterable[torch.Tensor]]:
ABs = []
for _ in range(num_tensors):
b_comp, e, a, b = make_rand_sparse_tensors(dtype, m, n, k)
if b_comp is not None:
ABs.append(make_rand_sparse_tensors(dtype, m, n, k))
BComps, Es, As, Bs = zip(*ABs)
return list(BComps), list(Es), list(As), list(Bs)
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy
import itertools
import pickle as pkl
import time
from typing import Callable, Iterable, List, Tuple
from collections.abc import Iterable
from typing import Callable, Optional
import torch
import torch.utils.benchmark as TBenchmark
from torch.utils.benchmark import Measurement as TMeasurement
from utils import make_rand_tensors
from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.utils import FlexibleArgumentParser
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
w8a8_block_fp8_matmul,
)
from vllm.utils import FlexibleArgumentParser, cdiv
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
DEFAULT_TP_SIZES = [1]
# helpers
def to_fp8(tensor: torch.Tensor) -> torch.Tensor:
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
def to_int8(tensor: torch.Tensor) -> torch.Tensor:
return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8)
def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
k: int) -> Tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device='cuda') * 5
b = torch.randn((n, k), device='cuda').t() * 5
if dtype == torch.int8:
return to_int8(a), to_int8(b)
if dtype == torch.float8_e4m3fn:
return to_fp8(a), to_fp8(b)
raise ValueError("unsupported dtype")
# bench
def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
**kwargs) -> TMeasurement:
def bench_fn(
label: str, sub_label: str, description: str, fn: Callable, *args, **kwargs
) -> TMeasurement:
min_run_time = 1
globals = {
......@@ -62,165 +46,149 @@ def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
).blocked_autorange(min_run_time=min_run_time)
def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
sub_label: str) -> Iterable[TMeasurement]:
def bench_int8(
dtype: torch.dtype,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[list[str]] = None,
) -> Iterable[TMeasurement]:
"""Benchmark INT8-based kernels."""
assert dtype == torch.int8
a, b = make_rand_tensors(torch.int8, m, n, k)
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
azp = torch.zeros((m, ), device="cuda", dtype=torch.int32)
azp_adj = torch.zeros((n, ), device="cuda", dtype=torch.int32)
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
azp = torch.zeros((m,), device="cuda", dtype=torch.int32)
azp_adj = torch.zeros((n,), device="cuda", dtype=torch.int32)
bench_fns = {
"pytorch_bf16_bf16_bf16_matmul-no-scales": lambda: torch.mm(
a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
),
"pytorch_fp16_fp16_fp16_matmul-no-scales": lambda: torch.mm(
a.to(dtype=torch.float16), b.to(dtype=torch.float16)
),
"cutlass_i8_i8_bf16_scaled_mm": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.bfloat16
),
"cutlass_i8_i8_bf16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.bfloat16, bias
),
"cutlass_i8_i8_bf16_scaled_mm_azp": lambda: ops.cutlass_scaled_mm_azp(
a, b, scale_a, scale_b, torch.bfloat16, azp_adj
),
"cutlass_i8_i8_bf16_scaled_mm_azp_bias": lambda: ops.cutlass_scaled_mm_azp(
a, b, scale_a, scale_b, torch.bfloat16, azp_adj, None, bias
),
"cutlass_i8_i8_bf16_scaled_mm_azp_pt": lambda: ops.cutlass_scaled_mm_azp(
a, b, scale_a, scale_b, torch.bfloat16, azp_adj, azp
),
"cutlass_i8_i8_bf16_scaled_mm_azp_pt_bias": lambda: ops.cutlass_scaled_mm_azp(
a, b, scale_a, scale_b, torch.bfloat16, azp_adj, azp, bias
),
}
timers = []
# pytorch impl - bfloat16
timers.append(
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm, a.to(dtype=torch.bfloat16),
b.to(dtype=torch.bfloat16)))
# pytorch impl - float16
timers.append(
bench_fn(label, sub_label,
"pytorch_fp16_fp16_fp16_matmul-no-scales", torch.mm,
a.to(dtype=torch.float16), b.to(dtype=torch.float16)))
# cutlass impl
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
torch.bfloat16))
# cutlass with bias
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_bias",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16,
bias))
# cutlass with azp per-tensor
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp",
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
torch.bfloat16, azp_adj))
# cutlass with azp per-tensor + bias
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp_bias",
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
torch.bfloat16, azp_adj, None, bias))
# cutlass with azp per-token
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp_pt",
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
torch.bfloat16, azp_adj, azp))
# cutlass with azp per-token + bias
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp_pt_bias",
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
torch.bfloat16, azp_adj, azp, bias))
for name, fn in bench_fns.items():
# If bench_kernels is None, run all. Otherwise, run only exact matches.
if bench_kernels is None or name in bench_kernels:
print(f"Running {name}")
timers.append(bench_fn(label, sub_label, name, fn))
return timers
def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
sub_label: str) -> Iterable[TMeasurement]:
def bench_fp8(
dtype: torch.dtype,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[list[str]] = None,
) -> Iterable[TMeasurement]:
"""Benchmark FP8-based kernels."""
assert dtype == torch.float8_e4m3fn
a, b = make_rand_tensors(torch.float8_e4m3fn, m, n, k)
a_cont = a.contiguous()
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
timers = []
block_scale_a = torch.rand((m, cdiv(k, 128)), device="cuda", dtype=torch.float32)
block_scale_b = torch.rand(
cdiv(k, 128), cdiv(n, 128), device="cuda", dtype=torch.float32
)
block_scale_a_M_major = block_scale_a.t().contiguous().t()
block_scale_b_K_major = block_scale_b.t().contiguous().t()
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
print(m, k, n)
bench_fns = {
"pytorch_bf16_bf16_bf16_matmul-no-scales": lambda: torch.mm(
a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
),
"pytorch_fp16_fp16_fp16_matmul-no-scales": lambda: torch.mm(
a.to(dtype=torch.float16), b.to(dtype=torch.float16)
),
"pytorch_fp8_fp8_fp16_scaled_mm": lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.float16
),
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum": lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.float16, use_fast_accum=True
),
"pytorch_fp8_fp8_bf16_scaled_mm": lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.bfloat16
),
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum": lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.bfloat16, use_fast_accum=True
),
"cutlass_fp8_fp8_bf16_scaled_mm": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.bfloat16
),
"cutlass_fp8_fp8_fp16_scaled_mm": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.float16
),
"cutlass_fp8_fp8_bf16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.bfloat16, bias
),
"cutlass_fp8_fp8_fp16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.float16, bias.to(dtype=torch.float16)
),
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_block_fp8_matmul(
a_cont, b.t(), block_scale_a, block_scale_b.t(), (128, 128)
),
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise": lambda: ops.cutlass_scaled_mm(
a, b, block_scale_a_M_major, block_scale_b_K_major, torch.float16
),
}
# pytorch impl w. bf16
timers.append(
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm, a.to(dtype=torch.bfloat16, device="cuda"),
b.to(dtype=torch.bfloat16, device="cuda")))
# pytorch impl: bf16 output, without fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16))
# pytorch impl: bf16 output, with fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16,
use_fast_accum=True))
# pytorch impl: fp16 output, without fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16))
# pytorch impl: fp16 output, with fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16,
use_fast_accum=True))
# cutlass impl: bf16 output
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
torch.bfloat16))
# cutlass impl: fp16 output
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_mm",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.float16))
# cutlass impl: bf16 output, with bias
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm_bias",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16,
bias))
# cutlass impl: fp16 output, with bias
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_mm_bias",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.float16,
bias.to(dtype=torch.float16)))
timers = []
for name, fn in bench_fns.items():
# If bench_kernels is None, run all. Otherwise, run only exact matches.
if bench_kernels is None or name in bench_kernels:
print(f"Running {name}")
timers.append(bench_fn(label, sub_label, name, fn))
return timers
def bench(dtype: torch.dtype, m: int, k: int, n: int, label: str,
sub_label: str) -> Iterable[TMeasurement]:
def bench(
dtype: torch.dtype,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[list[str]] = None,
) -> Iterable[TMeasurement]:
if dtype == torch.int8:
return bench_int8(dtype, m, k, n, label, sub_label)
return bench_int8(dtype, m, k, n, label, sub_label, bench_kernels)
if dtype == torch.float8_e4m3fn:
return bench_fp8(dtype, m, k, n, label, sub_label)
return bench_fp8(dtype, m, k, n, label, sub_label, bench_kernels)
raise ValueError("unsupported type")
......@@ -230,23 +198,33 @@ def print_timers(timers: Iterable[TMeasurement]):
compare.print()
def run(dtype: torch.dtype,
MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]:
def run(
dtype: torch.dtype,
MKNs: Iterable[tuple[int, int, int]],
bench_kernels: Optional[list[str]] = None,
) -> Iterable[TMeasurement]:
results = []
for m, k, n in MKNs:
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm",
f"MKN=({m}x{k}x{n})")
timers = bench(
dtype,
m,
k,
n,
f"scaled-{dtype}-gemm",
f"MKN=({m}x{k}x{n})",
bench_kernels=bench_kernels,
)
print_timers(timers)
results.extend(timers)
return results
# output makers
def make_output(data: Iterable[TMeasurement],
MKNs: Iterable[Tuple[int, int, int]],
base_description: str,
timestamp=None):
def make_output(
data: Iterable[TMeasurement],
MKNs: Iterable[tuple[int, int, int]],
base_description: str,
timestamp=None,
):
print(f"== All Results {base_description} ====")
print_timers(data)
......@@ -256,15 +234,10 @@ def make_output(data: Iterable[TMeasurement],
pkl.dump(data, f)
# argparse runners
def run_square_bench(args):
dim_sizes = list(
range(args.dim_start, args.dim_end + 1, args.dim_increment))
dim_sizes = list(range(args.dim_start, args.dim_end + 1, args.dim_increment))
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
data = run(args.dtype, MKNs)
data = run(args.dtype, MKNs, bench_kernels=args.kernels)
make_output(data, MKNs, f"square_bench-{args.dtype}")
......@@ -275,8 +248,7 @@ def run_range_bench(args):
Ks = [args.k_constant] * n if args.k_constant is not None else dim_sizes
Ns = [args.n_constant] * n if args.n_constant is not None else dim_sizes
MKNs = list(zip(Ms, Ks, Ns))
data = run(args.dtype, MKNs)
data = run(args.dtype, MKNs, bench_kernels=args.kernels)
make_output(data, MKNs, f"range_bench-{args.dtype}")
......@@ -285,7 +257,7 @@ def run_model_bench(args):
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
def model_shapes(model_name: str, tp_size: int) -> List[Tuple[int, int]]:
def model_shapes(model_name: str, tp_size: int) -> list[tuple[int, int]]:
KNs = []
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model_name]):
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
......@@ -302,7 +274,7 @@ def run_model_bench(args):
for k, n in KNs:
MKNs.append((m, k, n))
data = run(args.dtype, MKNs)
data = run(args.dtype, MKNs, bench_kernels=args.kernels)
model_bench_data.append(data)
# Print all results
......@@ -321,7 +293,7 @@ def run_model_bench(args):
pkl.dump(all_data, f)
if __name__ == '__main__':
if __name__ == "__main__":
def to_torch_dtype(dt):
if dt == "int8":
......@@ -346,12 +318,23 @@ Benchmark Cutlass GEMM.
Output:
- a .pkl file, that is a list of raw torch.benchmark.utils.Measurements for the pytorch and cutlass implementations for the various GEMMs.
""", # noqa: E501
formatter_class=argparse.RawTextHelpFormatter)
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"--dtype",
type=to_torch_dtype,
required=True,
help="Available options are ['int8', 'fp8']",
)
parser.add_argument(
"--kernels",
nargs="+",
type=str,
default=None,
help="Exact names of the kernels to benchmark. If not set, runs all kernels.",
)
parser.add_argument("--dtype",
type=to_torch_dtype,
required=True,
help="Available options are ['int8', 'fp8']")
subparsers = parser.add_subparsers(dest="cmd")
square_parser = subparsers.add_parser("square_bench")
......@@ -370,19 +353,19 @@ Benchmark Cutlass GEMM.
range_parser.set_defaults(func=run_range_bench)
model_parser = subparsers.add_parser("model_bench")
model_parser.add_argument("--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys())
model_parser.add_argument("--tp-sizes",
nargs="+",
type=int,
default=DEFAULT_TP_SIZES)
model_parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
model_parser.add_argument(
"--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys(),
)
model_parser.add_argument(
"--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES
)
model_parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
model_parser.set_defaults(func=run_model_bench)
args = parser.parse_args()
......
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Weight Shapes are in the format
# ([K, N], TP_SPLIT_DIM)
# Example:
......
#!/bin/bash
# benchmark the overhead of disaggregated prefill.
# methodology:
# - send all request to prefill vLLM instance. It will buffer KV cache.
# - then send all request to decode instance.
# - The TTFT of decode instance is the overhead.
set -ex
kill_gpu_processes() {
# kill all processes on GPU.
pgrep pt_main_thread | xargs -r kill -9
pgrep python3 | xargs -r kill -9
sleep 10
# remove vllm config file
rm -rf ~/.config/vllm
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
local port=$1
timeout 1200 bash -c "
until curl -s localhost:${port}/v1/completions > /dev/null; do
sleep 1
done" && return 0 || return 1
}
benchmark() {
export VLLM_LOGGING_LEVEL=DEBUG
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
# compare chunked prefill with disaggregated prefill
results_folder="./results"
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
dataset_name="sonnet"
dataset_path="../sonnet_4x.txt"
num_prompts=10
qps=$1
prefix_len=50
input_len=2048
output_len=$2
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8100 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8200 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
wait_for_server 8100
wait_for_server 8200
# let the prefill instance finish prefill
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8100 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1.json \
--request-rate "inf"
# send the request to decode.
# The TTFT of this command will be the overhead of disagg prefill impl.
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8200 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1_overhead.json \
--request-rate "$qps"
kill_gpu_processes
}
main() {
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get -y install jq)
(which socat) || (apt-get -y install socat)
pip install quart httpx datasets
cd "$(dirname "$0")"
cd ..
# create sonnet-4x.txt
echo "" > sonnet_4x.txt
for _ in {1..4}
do
cat sonnet.txt >> sonnet_4x.txt
done
cd disagg_benchmarks
rm -rf results
mkdir results
default_qps=1
default_output_len=1
benchmark $default_qps $default_output_len
}
main "$@"
#!/bin/bash
# Requirement: 2x GPUs.
# Model: meta-llama/Meta-Llama-3.1-8B-Instruct
# Query: 1024 input tokens, 6 output tokens, QPS 2/4/6/8, 100 requests
# Resource: 2x GPU
# Approaches:
# 2. Chunked prefill: 2 vllm instance with tp=4, equivalent to 1 tp=4 instance with QPS 4
# 3. Disaggregated prefill: 1 prefilling instance and 1 decoding instance
# Prefilling instance: max_output_token=1
# Decoding instance: force the input tokens be the same across requests to bypass prefilling
set -ex
kill_gpu_processes() {
# kill all processes on GPU.
pgrep pt_main_thread | xargs -r kill -9
pgrep python3 | xargs -r kill -9
for port in 8000 8100 8200; do lsof -t -i:$port | xargs -r kill -9; done
sleep 1
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
local port=$1
timeout 1200 bash -c "
until curl -s localhost:${port}/v1/completions > /dev/null; do
sleep 1
done" && return 0 || return 1
}
launch_chunked_prefill() {
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
# disagg prefill
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8100 \
--max-model-len 10000 \
--enable-chunked-prefill \
--gpu-memory-utilization 0.6 &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8200 \
--max-model-len 10000 \
--enable-chunked-prefill \
--gpu-memory-utilization 0.6 &
wait_for_server 8100
wait_for_server 8200
python3 round_robin_proxy.py &
sleep 1
}
launch_disagg_prefill() {
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
# disagg prefill
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8100 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8200 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
wait_for_server 8100
wait_for_server 8200
python3 disagg_prefill_proxy_server.py &
sleep 1
}
benchmark() {
results_folder="./results"
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
dataset_name="sonnet"
dataset_path="../sonnet_4x.txt"
num_prompts=100
qps=$1
prefix_len=50
input_len=1024
output_len=$2
tag=$3
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8000 \
--save-result \
--result-dir $results_folder \
--result-filename "$tag"-qps-"$qps".json \
--request-rate "$qps"
sleep 2
}
main() {
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get -y install jq)
(which socat) || (apt-get -y install socat)
(which lsof) || (apt-get -y install lsof)
pip install quart httpx matplotlib aiohttp datasets
cd "$(dirname "$0")"
cd ..
# create sonnet-4x.txt so that we can sample 2048 tokens for input
echo "" > sonnet_4x.txt
for _ in {1..4}
do
cat sonnet.txt >> sonnet_4x.txt
done
cd disagg_benchmarks
rm -rf results
mkdir results
default_output_len=6
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
launch_chunked_prefill
for qps in 2 4 6 8; do
benchmark $qps $default_output_len chunked_prefill
done
kill_gpu_processes
launch_disagg_prefill
for qps in 2 4 6 8; do
benchmark $qps $default_output_len disagg_prefill
done
kill_gpu_processes
python3 visualize_benchmark_results.py
}
main "$@"
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment