Commit 6d5cbdb8 authored by raojy's avatar raojy
Browse files

updata

parent 9e2e1a15
......@@ -37,19 +37,48 @@ Visual Coding Boost:从图像/视频生成 Draw.io/HTML/CSS/JS。
| torchvision | 0.20.1+das.opt1.dtk25042 |
| flash_attn | 2.6.1+das.opt1.dtk2504 |
| av | 16.0.1 |
| vllm | 0.11.0+das.opt1.alpha.dtk25042.20251225.gca4598a4 |
## 硬件需求
DCU型号:K100AI,节点数量:2台,卡数:16 张。
推荐使用镜像:
- 挂载地址`-v``{docker_name}``{docker_image_name}`根据实际模型情况修改
推荐使用镜像:harbor.sourcefind.cn:5443/dcu/admin/base/vllm:0.11.0-ubuntu22.04-dtk25.04.2-1226-das1.7-py3.10-20251226
- 挂载地址`-v`
```bash
docker run -it --shm-size 200g --network=host --name {docker_name} --privileged --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root -v /path/your_code_path/:/path/your_code_path/ -v /opt/hyhal/:/opt/hyhal/:ro {docker_image_name} bash
docker run -it \
--shm-size 60g \
--network=host \
--name {docker_name} \
--privileged \
--device=/dev/kfd \
--device=/dev/dri \
--device=/dev/mkfd \
--group-add video \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
-u root \
-v /opt/hyhal/:/opt/hyhal/:ro \
-v /path/your_code_data/:/path/your_code_data/ \
{docker_image_name} bash
示例如下:
docker pull harbor.sourcefind.cn:5443/dcu/admin/base/vllm:0.11.0-ubuntu22.04-dtk25.04.2-1226-das1.7-py3.10-20251226
docker run -it --shm-size 200g --network=host --name qwen3vl --privileged --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root -v /path/your_code_path/:/path/your_code_path/ -v /opt/hyhal/:/opt/hyhal/:ro harbor.sourcefind.cn:5443/dcu/admin/base/vllm:0.11.0-ubuntu22.04-dtk25.04.2-1226-das1.7-py3.10-20251226 bash
#视频推理时安装PyAV后端依赖
pip install av
docker run -it \
--shm-size 60g \
--network=host \
--name qwen3 \
--privileged \
--device=/dev/kfd \
--device=/dev/dri \
--device=/dev/mkfd \
--group-add video \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
-u root \
-v /opt/hyhal/:/opt/hyhal/:ro \
-v /path/your_code_data/:/path/your_code_data/ \
image.sourcefind.cn:5000/dcu/admin/base/vllm:0.9.2-ubuntu22.04-dtk25.04.2-py3.10 bash
```
更多镜像可前往[光源](https://sourcefind.cn/#/service-list)下载使用。
......@@ -80,88 +109,210 @@ HIP_VISIBLE_DEVICES=0 python qwen3vl_infer_multi_images.py
HIP_VISIBLE_DEVICES=0 python qwen3vl_infer_video.py
```
## vllm
#### 单机推理
```bash
## serve启动
export HF_HUB_OFFLINE=1
export TRANSFORMERS_OFFLINE=1
vllm serve Qwen3-VL-8B-Instruct \
--trust-remote-code \
--max-model-len 32768 \
--served-model-name qwen-vl \
--dtype bfloat16 \
--tensor-parallel-size 1 \
--gpu-memory-utilization 0.9
## client访问
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "qwen-vl",
"messages": [
{
"role": "user",
"content": "牛顿提出了哪三大运动定律?请简要说明。"
}
]
}'
```
### 多机多卡推理
样例模型:[Qwen3-VL-235B-A22B-Thinking ](https://huggingface.co/Qwen/Qwen3-VL-235B-A22B-Thinking)
1. 加入环境变量
> 请注意:
> 每个节点上的环境变量都写到.sh文件中,保存后各个计算节点分别source`.sh`文件
>
> VLLM_HOST_IP:节点本地通信口ip,尽量选择IB网卡的IP,**避免出现rccl超时问题**
>
> NCCL_SOCKET_IFNAME和 GLOO_SOCKET_IFNAME:节点本地通信网口ip对应的名称
>
> 通信口和ip查询方法:ifconfig
>
> IB口状态查询:ibstat !!!一定要active激活状态才可用,各个节点要保持统一
```bash
export ALLREDUCE_STREAM_WITH_COMPUTE=1
export VLLM_HOST_IP=x.x.x.x # 对应计算节点的IP,选择IB口SOCKET_IFNAME对应IP地址
export NCCL_SOCKET_IFNAME=ibxxxx
export GLOO_SOCKET_IFNAME=ibxxxx
export NCCL_IB_HCA=mlx5_0:1 # 环境中的IB网卡名字
unset NCCL_ALGO
export NCCL_MIN_NCHANNELS=16
export NCCL_MAX_NCHANNELS=16
export NCCL_NET_GDR_READ=1
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export VLLM_SPEC_DECODE_EAGER=1
export VLLM_MLA_DISABLE=0
export VLLM_USE_FLASH_MLA=1
# K100_AI集群建议额外设置的环境变量:
export VLLM_ENFORCE_EAGER_BS_THRESHOLD=44
export VLLM_RPC_TIMEOUT=1800000
# 海光CPU绑定核
export VLLM_NUMA_BIND=1
export VLLM_RANK0_NUMA=0
export VLLM_RANK1_NUMA=1
export VLLM_RANK2_NUMA=2
export VLLM_RANK3_NUMA=3
export VLLM_RANK4_NUMA=4
export VLLM_RANK5_NUMA=5
export VLLM_RANK6_NUMA=6
export VLLM_RANK7_NUMA=7
```
2. 启动RAY集群
> x.x.x.x 对应第一步 VLLM_HOST_IP
```bash
# head节点执行
ray start --head --node-ip-address=x.x.x.x --port=6379 --num-gpus=8 --num-cpus=32
# worker节点执行
ray start --address='x.x.x.x:6379' --num-gpus=8 --num-cpus=32
```
3. 启动vllm server
> intel cpu 需要加参数:`--enforce-eager`
```bash
vllm serve Qwen/Qwen3-VL-235B-A22B-Thinking \
--host *.*.*.* \
--port 8000 \
--distributed-executor-backend ray \
--tensor-parallel-size 8 \
--pipeline-parallel-size 2 \
--trust-remote-code \
--dtype bfloat16 \
--max-model-len 32768 \
--max-num-seqs 128 \
--block-size 64 \
--gpu-memory-utilization 0.90 \
--enforce-eager \
--allowed-local-media-path / \
--served-model-name qwen-vl \
--override-generation-config '{"temperature": 0.7, "top_p":0.8, "top_k":20, "repetition_penalty": 1.05}'
```
启动完成后可通过以下方式访问:
```bash
curl http://x.x.x.x:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "qwen-vl",
"messages": [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "file://test22.png"
}
},
{
"type": "text",
"text": "请详细描述这张图片的内容。"
}
]
}
],
"max_tokens": 512,
"temperature": 0.7
}'
```
## vllm效果展示
## 效果展示
**场景1** :普通图文对话
Input:
- image:
<div align=center>
<img src="./doc/demo.jpeg"/>
</div>
- text: "Describe this image."
Output:
<div align=center>
<img src="./doc/result.png"/>
</div>
**场景2** :多图像推理
Input:
- image1:
<div align=center>
<img src="./doc/demo.jpeg"/>
</div>
- image2:
<div align=center>
<img src="./doc/dog.jpg"/>
</div>
- text: "Identify the similarities between these images."
Output:
<div align=center>
<img src="./doc/result_multi_images.png"/>
</div>
**场景3** :视频推理
- Vedio:
![space_woaudio](./doc/space_woaudio.mp4)
![space_woaudio](./doc/space_woaudio.mp4)
- text:: "Describe this video."
Output:
<div align=center>
<img src="./doc/result_vedio.png"/>
</div>
## vllm
#### 单机推理
```bash
## serve启动
export HF_HUB_OFFLINE=1
export TRANSFORMERS_OFFLINE=1
vllm serve Qwen3-VL-8B-Instruct \
--trust-remote-code \
--max-model-len 32768 \
--served-model-name qwen-vl \
--dtype bfloat16 \
--tensor-parallel-size 1 \
--gpu-memory-utilization 0.9
## client访问
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "qwen-vl",
"messages": [
{
"role": "user",
"content": "牛顿提出了哪三大运动定律?请简要说明。"
}
]
}'
```
## vllm效果展示
<div align=center>
<img src="./doc/perform.png"/>
</div>
### 精度
......@@ -170,8 +321,9 @@ curl http://localhost:8000/v1/chat/completions \
## 预训练权重
| 模型名称 | 权重大小 | DCU型号 | 最低卡数需求 |下载地址|
|:--------------------:|:----:|:----------:|:------:|:----------:|
| Qwen3-VL-4B-Instruct | 4B | BW1000| 1 | [Hugging Face](https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct) |
| Qwen3-VL-8B-Instruct | 8B | BW1000| 1 | [Hugging Face](https://huggingface.co/Qwen/Qwen3-VL-8B-Instruct) |
| Qwen3-VL-4B-Instruct | 4B | K100AI| 1 | [Hugging Face](https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct) |
| Qwen3-VL-8B-Instruct | 8B | K100AI| 1 | [Hugging Face](https://huggingface.co/Qwen/Qwen3-VL-8B-Instruct) |
| Qwen3-VL-235B-A22B-Thinking | 235B | K100AI| 16 | [Hugging Face](https://huggingface.co/Qwen/Qwen3-VL-235B-A22B-Thinking) |
## 源码仓库及问题反馈
- https://developer.sourcefind.cn/codes/modelzoo/qwen3-vl_pytorch
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment