README.md 7.95 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# qwen-vl-utils

Qwen-VL Utils contains a set of helper functions for processing and integrating visual language information with Qwen-VL Series Model.

## Install

```bash
pip install qwen-vl-utils
```

## Usage

### Qwen2VL

```python
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info


# You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
messages = [
    # Image
    ## Local file path
    [{"role": "user", "content": [{"type": "image", "image": "file:///path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
    ## Image URL
    [{"role": "user", "content": [{"type": "image", "image": "http://path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
    ## Base64 encoded image
    [{"role": "user", "content": [{"type": "image", "image": "data:image;base64,/9j/..."}, {"type": "text", "text": "Describe this image."}]}],
    ## PIL.Image.Image
    [{"role": "user", "content": [{"type": "image", "image": pil_image}, {"type": "text", "text": "Describe this image."}]}],
    ## Model dynamically adjusts image size, specify dimensions if required.
    [{"role": "user", "content": [{"type": "image", "image": "file:///path/to/your/image.jpg", "resized_height": 280, "resized_width": 420}, {"type": "text", "text": "Describe this image."}]}],
    # Video
    ## Local video path
    [{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4"}, {"type": "text", "text": "Describe this video."}]}],
    ## Local video frames
    [{"role": "user", "content": [{"type": "video", "video": ["file:///path/to/extracted_frame1.jpg", "file:///path/to/extracted_frame2.jpg", "file:///path/to/extracted_frame3.jpg"],}, {"type": "text", "text": "Describe this video."},],}],
    ## Model dynamically adjusts video nframes, video height and width. specify args if required.
    [{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4", "fps": 2.0, "resized_height": 280, "resized_width": 280}, {"type": "text", "text": "Describe this video."}]}],
]

processor = AutoProcessor.from_pretrained(model_path)
model = Qwen2VLForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto", device_map="auto")
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
images, videos = process_vision_info(messages)
inputs = processor(text=text, images=images, videos=videos, padding=True, return_tensors="pt")
print(inputs)
generated_ids = model.generate(**inputs)
print(generated_ids)
```

### Qwen2.5VL

```python
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info


# You can set the maximum tokens for a video through the environment variable VIDEO_MAX_PIXELS
# based on the maximum tokens that the model can accept. 
# export VIDEO_MAX_PIXELS = 32000 * 28 * 28 * 0.9


# You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
messages = [
    # Image
    ## Local file path
    [{"role": "user", "content": [{"type": "image", "image": "file:///path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
    ## Image URL
    [{"role": "user", "content": [{"type": "image", "image": "http://path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
    ## Base64 encoded image
    [{"role": "user", "content": [{"type": "image", "image": "data:image;base64,/9j/..."}, {"type": "text", "text": "Describe this image."}]}],
    ## PIL.Image.Image
    [{"role": "user", "content": [{"type": "image", "image": pil_image}, {"type": "text", "text": "Describe this image."}]}],
    ## Model dynamically adjusts image size, specify dimensions if required.
    [{"role": "user", "content": [{"type": "image", "image": "file:///path/to/your/image.jpg", "resized_height": 280, "resized_width": 420}, {"type": "text", "text": "Describe this image."}]}],
    # Video
    ## Local video path
    [{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4"}, {"type": "text", "text": "Describe this video."}]}],
    ## Local video frames
    [{"role": "user", "content": [{"type": "video", "video": ["file:///path/to/extracted_frame1.jpg", "file:///path/to/extracted_frame2.jpg", "file:///path/to/extracted_frame3.jpg"],}, {"type": "text", "text": "Describe this video."},],}],
    ## Model dynamically adjusts video nframes, video height and width. specify args if required.
    [{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4", "fps": 2.0, "resized_height": 280, "resized_width": 280}, {"type": "text", "text": "Describe this video."}]}],
]

processor = AutoProcessor.from_pretrained(model_path)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto", device_map="auto")
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
images, videos, video_kwargs = process_vision_info(messages, return_video_kwargs=True)
inputs = processor(text=text, images=images, videos=videos, padding=True, return_tensors="pt", **video_kwargs)
print(inputs)
generated_ids = model.generate(**inputs)
print(generated_ids)
```

### Qwen3VL

```python
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info

# You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
messages = [
    # Image
    ## Local file path
    [{"role": "user", "content": [{"type": "image", "image": "file:///path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
    ## Image URL
    [{"role": "user", "content": [{"type": "image", "image": "http://path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
    ## Base64 encoded image
    [{"role": "user", "content": [{"type": "image", "image": "data:image;base64,/9j/..."}, {"type": "text", "text": "Describe this image."}]}],
    ## PIL.Image.Image
    [{"role": "user", "content": [{"type": "image", "image": pil_image}, {"type": "text", "text": "Describe this image."}]}],
    ## Model dynamically adjusts image size, specify dimensions if required.
    [{"role": "user", "content": [{"type": "image", "image": "file:///path/to/your/image.jpg", "resized_height": 280, "resized_width": 420}, {"type": "text", "text": "Describe this image."}]}],
    # Video
    ## Local video path
    [{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4"}, {"type": "text", "text": "Describe this video."}]}],
    ## Local video frames
    [{"role": "user", "content": [{"type": "video", "video": ["file:///path/to/extracted_frame1.jpg", "file:///path/to/extracted_frame2.jpg", "file:///path/to/extracted_frame3.jpg"],}, {"type": "text", "text": "Describe this video."},],}],
    ## Model dynamically adjusts video nframes, video height and width. specify args if required.
    [{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4", "fps": 2.0, "resized_height": 280, "resized_width": 280}, {"type": "text", "text": "Describe this video."}]}],
]

processor = AutoProcessor.from_pretrained(model_path)
model = Qwen3VLForConditionalGeneration.from_pretrained(model_path, dtype="auto", device_map="auto")

text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
images, videos, video_kwargs = process_vision_info(messages, image_patch_size=16, return_video_kwargs=True, return_video_metadata=True)

if videos is not None:
    videos, video_metadatas = zip(*videos)
    videos, video_metadatas = list(videos), list(video_metadatas)
else:
    video_metadatas = None

inputs = processor(text=text, images=images, videos=videos, video_metadata=video_metadatas, return_tensors="pt", do_resize=False, **video_kwargs)
inputs = inputs.to(model.device)

generated_ids = model.generate(**inputs)
print(generated_ids)
```