run_mmmu.py 16.9 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os
import sys
import json
import argparse
import pandas as pd
import numpy as np
import time
from tqdm import tqdm
from typing import List, Dict, Any
import torch
import warnings
import string
import traceback

# vLLM imports
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor

# Local imports from refactored files
from dataset_utils import load_dataset, dump_image, MMMU_preproc
from eval_utils import build_judge, eval_single_sample

# Set vLLM multiprocessing method
os.environ['VLLM_WORKER_MULTIPROC_METHOD'] = 'spawn'

def build_mmmu_prompt(line, dump_image_func, dataset):
    """Build MMMU dataset prompt with standard resolution settings."""
    # Standard resolution settings
    MIN_PIXELS = 1280*28*28  # ~1M pixels
    MAX_PIXELS = 5120*28*28  # ~4M pixels
    
    tgt_path = dump_image_func(line)
    question = line['question']
    options = {cand: line[cand] for cand in string.ascii_uppercase if cand in line and not pd.isna(line[cand])}
    options_prompt = 'Options:\n'
    for key, item in options.items():
        options_prompt += f'{key}. {item}\n'
    hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
    prompt = ''
    if hint is not None:
        prompt += f'Hint: {hint}\n'
    prompt += f'Question: {question}\n'
    if len(options):
        prompt += options_prompt
        prompt += 'Please select the correct answer from the options above. \n'
    prompt = prompt.rstrip()
    
    # Build messages in standard conversation format
    content = []
    if isinstance(tgt_path, list):
        for p in tgt_path:
            content.append({
                "type": "image",
                "image": p,
                "min_pixels": MIN_PIXELS,
                "max_pixels": MAX_PIXELS
            })
    else:
        content.append({
            "type": "image", 
            "image": tgt_path,
            "min_pixels": MIN_PIXELS,
            "max_pixels": MAX_PIXELS
        })
    content.append({"type": "text", "text": prompt})
    
    # Return messages in standard conversation format
    messages = [{
        "role": "user",
        "content": content
    }]
    
    return messages

def prepare_inputs_for_vllm(messages, processor):
    """
    Prepare inputs for vLLM (following the examples in README.md).
    
    Args:
        messages: List of messages in standard conversation format
        processor: AutoProcessor instance
    
    Returns:
        dict: Input format required by vLLM
    """
    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    
    # qwen_vl_utils 0.0.14+ required
    image_inputs, video_inputs, video_kwargs = process_vision_info(
        messages,
        image_patch_size=processor.image_processor.patch_size,
        return_video_kwargs=True,
        return_video_metadata=True
    )
    
    mm_data = {}
    if image_inputs is not None:
        mm_data['image'] = image_inputs
    if video_inputs is not None:
        mm_data['video'] = video_inputs
    
    return {
        'prompt': text,
        'multi_modal_data': mm_data,
        'mm_processor_kwargs': video_kwargs
    }

def run_inference(args):
    """Run inference on the MMMU dataset using vLLM."""
    print("\n" + "="*80)
    print("🚀 MMMU Inference with vLLM (High-Speed Mode)")
    print("="*80 + "\n")
    
    # Load dataset
    data = load_dataset(args.dataset)
    print(f"✓ Loaded {len(data)} samples from {args.dataset}")
    
    # Set up image root directory
    img_root = os.path.join(os.environ['LMUData'], 'images', 'MMMU')
    os.makedirs(img_root, exist_ok=True)
    
    # Set up dump_image function
    def dump_image_func(line):
        return dump_image(line, img_root)
    
    # Create output directory
    os.makedirs(os.path.dirname(args.output_file), exist_ok=True)

    # Set up CoT prompt if enabled
    cot_prompt = ""
    if args.use_cot:
        cot_prompt = args.cot_prompt if args.cot_prompt else " If you are uncertain or the problem is too complex, make a reasoned guess based on the information provided. Avoid repeating steps indefinitely—provide your best guess even if unsure. Determine whether to think step by step based on the difficulty of the question, considering all relevant information before answering."
        print(f"✓ Using CoT prompt: {cot_prompt[:50]}...")

    # Set up generation parameters (vLLM SamplingParams format)
    sampling_params = SamplingParams(
        temperature=args.temperature,
        top_p=args.top_p,
        top_k=args.top_k,
        max_tokens=args.max_new_tokens,
        repetition_penalty=args.repetition_penalty,
        presence_penalty=args.presence_penalty,
        stop_token_ids=[],
    )
    
    print(f"\n⚙️  Generation parameters (vLLM SamplingParams):")
    print(f"   max_tokens={sampling_params.max_tokens}")
    print(f"   temperature={sampling_params.temperature}, top_p={sampling_params.top_p}, top_k={sampling_params.top_k}")
    print(f"   repetition_penalty={sampling_params.repetition_penalty}")
    print(f"   presence_penalty={sampling_params.presence_penalty}")
    
    if sampling_params.presence_penalty > 0:
        print(f"   ✅ Anti-repetition enabled (presence_penalty={sampling_params.presence_penalty})")
    
    if sampling_params.temperature <= 0.02 and sampling_params.top_k == 1:
        print(f"   ✅ Using FAST greedy-like decoding")
    else:
        print(f"   ⚠️  Using sampling decoding (slower but more diverse)")
    print()

    # Load processor for input preparation
    print(f"Loading processor from {args.model_path}")
    processor = AutoProcessor.from_pretrained(args.model_path)
    print("✓ Processor loaded\n")
    
    # Initialize vLLM
    print(f"Initializing vLLM with model: {args.model_path}")
    print(f"   GPU count: {torch.cuda.device_count()}")
    print(f"   Tensor parallel size: {args.tensor_parallel_size}")
    
    llm = LLM(
        model=args.model_path,
        tensor_parallel_size=args.tensor_parallel_size,
        gpu_memory_utilization=args.gpu_memory_utilization,
        trust_remote_code=True,
        max_model_len=args.max_model_len,
        limit_mm_per_prompt={"image": args.max_images_per_prompt},
        seed=42,
    )
    print("✓ vLLM initialized successfully\n")
    
    # Prepare all inputs
    print("Preparing inputs for vLLM...")
    all_inputs = []
    all_line_dicts = []
    all_messages = []
    
    for idx, (_, line) in enumerate(tqdm(data.iterrows(), total=len(data), desc="Building prompts")):
        # Convert line to dict
        line_dict = line.to_dict()
        for k, v in line_dict.items():
            if isinstance(v, np.integer):
                line_dict[k] = int(v)
            elif isinstance(v, np.floating):
                line_dict[k] = float(v)
        
        # Build prompt
        messages = build_mmmu_prompt(line, dump_image_func, args.dataset)
        
        # Add CoT prompt
        if args.use_cot and len(messages) > 0 and len(messages[0]['content']) > 0:
            last_content = messages[0]['content'][-1]
            if last_content['type'] == 'text':
                last_content['text'] += cot_prompt
        
        # Prepare input for vLLM
        vllm_input = prepare_inputs_for_vllm(messages, processor)
        
        all_inputs.append(vllm_input)
        all_line_dicts.append(line_dict)
        all_messages.append(messages)
    
    print(f"✓ Prepared {len(all_inputs)} inputs\n")
    
    # Batch inference (vLLM automatic optimization)
    print("="*80)
    print("🚀 Running vLLM batch inference (automatic optimization)")
    print("="*80)
    start_time = time.time()
    
    outputs = llm.generate(all_inputs, sampling_params=sampling_params)
    
    end_time = time.time()
    total_time = end_time - start_time
    print(f"\n✓ Inference completed in {total_time:.2f} seconds")
    print(f"  Average: {total_time/len(data):.2f} seconds/sample")
    print(f"  Throughput: {len(data)/total_time:.2f} samples/second\n")
    
    # Save results
    print("Saving results...")
    results = []
    
    for idx, (line_dict, messages, output) in enumerate(zip(all_line_dicts, all_messages, outputs)):
        response = output.outputs[0].text
        index = line_dict['index']

        response_final = str(response).split("</think>")[-1].strip()
        
        result = {
            "question_id": int(index) if isinstance(index, np.integer) else index,
            "annotation": line_dict,
            "task": args.dataset,
            "result": {"gen": response_final, "gen_raw": response},
            "messages": messages
        }
        results.append(result)
    
    # Write final results
    with open(args.output_file, 'w') as f:
        for res in results:
            f.write(json.dumps(res) + '\n')
    
    print(f"\n✓ Results saved to {args.output_file}")
    print(f"✓ Total samples processed: {len(results)}")

def run_evaluation(args):
    """Run evaluation on inference results."""
    # Load results
    results = []
    with open(args.input_file, 'r') as f:
        for line in f:
            job = json.loads(line)
            annotation = job["annotation"]
            annotation["prediction"] = job["result"]["gen"]
            results.append(annotation)
            
    data = pd.DataFrame.from_records(results)
    data = data.sort_values(by='index')
    data['prediction'] = [str(x) for x in data['prediction']]
    # If not choice label, then use lower case
    for k in data.keys():
        data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)

    # Load dataset
    meta = load_dataset(args.dataset)

    # Validation
    print(f"len(data): {len(data)}")
    print(f"len(meta): {len(meta)}")
    meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
    data_map = {x: y for x, y in zip(data['index'], data['question'])}
    for k in data_map:
        assert k in meta_q_map, (
            f'eval_file should be the same as or a subset of dataset MMMU_DEV_VAL'
        )

    answer_map = {i: c for i, c in zip(meta['index'], meta['answer'])}
    data = MMMU_preproc(data)
    answer_map = {k: (v if v in list(string.ascii_uppercase) else 'A') for k, v in answer_map.items()}
    data = data[data['index'].isin(answer_map)]
    data['GT'] = [answer_map[idx] for idx in data['index']]
    items = []
    for i in range(len(data)):
        item = data.iloc[i]
        items.append(item)

    # Build judge model
    model = build_judge(
        model=getattr(args, 'eval_model', 'gpt-3.5-turbo-0125'),
        api_type=getattr(args, 'api_type', 'dash')
    )
    
    # Prepare evaluation tasks
    eval_tasks = []
    for item in items:
        eval_tasks.append((model, item))
    
    # Run evaluation
    eval_results = []
    
    # Debug mode: process single-threaded with first few samples
    debug = os.environ.get('DEBUG', '').lower() == 'true'
    if debug:
        print("Running in debug mode with first 5 samples...")
        for task in eval_tasks[:5]:
            try:
                result = eval_single_sample(task)
                eval_results.append(result)
            except Exception as e:
                print(f"Error processing task: {e}")
                print(f"Task details: {task}")
                raise
    else:
        # Normal mode: process all samples with threading
        from concurrent.futures import ThreadPoolExecutor
        nproc = getattr(args, 'nproc', 4)
        with ThreadPoolExecutor(max_workers=nproc) as executor:
            for result in tqdm(executor.map(eval_single_sample, eval_tasks), 
                             total=len(eval_tasks), desc="Evaluating"):
                eval_results.append(result)
    
    # Calculate overall accuracy
    accuracy = sum(r['hit'] for r in eval_results) / len(eval_results)
    
    # Calculate accuracy by split
    results_by_split = {}
    for result in eval_results:
        split = result.get('split', 'unknown')
        if split not in results_by_split:
            results_by_split[split] = []
        results_by_split[split].append(result)
    
    accuracy_by_split = {}
    for split, split_results in results_by_split.items():
        split_accuracy = sum(r['hit'] for r in split_results) / len(split_results)
        accuracy_by_split[split] = split_accuracy
        print(f"Accuracy for {split} split: {split_accuracy:.4f} ({sum(r['hit'] for r in split_results)}/{len(split_results)})")
    
    # Save results
    output_df = pd.DataFrame(eval_results)
    output_df.to_csv(args.output_file, index=False)
    
    # Save accuracy
    with open(args.output_file.replace('.csv', '_acc.json'), 'w') as f:
        json.dump({
            "overall_accuracy": accuracy,
            "accuracy_by_split": accuracy_by_split
        }, f, indent=2)
    
    print(f"\n{'='*50}")
    print(f"Evaluation Results:")
    print(f"{'='*50}")
    print(f"Overall accuracy: {accuracy:.4f}")
    print(f"{'='*50}\n")

def main():
    parser = argparse.ArgumentParser(description="MMMU Evaluation with vLLM")
    subparsers = parser.add_subparsers(dest='command', help='Command to run')
    
    # Inference parser
    infer_parser = subparsers.add_parser("infer", help="Run inference with vLLM")
    infer_parser.add_argument("--model-path", type=str, required=True, help="Path to the model")
    infer_parser.add_argument("--dataset", type=str, default="MMMU_DEV_VAL", help="Dataset name")
    infer_parser.add_argument("--data-dir", type=str, help="The absolute path of MMMU_DEV_VAL.tsv")
    infer_parser.add_argument("--output-file", type=str, required=True, help="Output file path")
    infer_parser.add_argument("--use-cot", action="store_true", help="Use Chain-of-Thought prompting")
    infer_parser.add_argument("--cot-prompt", type=str, default="", help="Custom Chain-of-Thought prompt")
    
    # vLLM specific parameters
    infer_parser.add_argument("--tensor-parallel-size", type=int, default=None, 
                            help="Tensor parallel size (default: number of GPUs)")
    infer_parser.add_argument("--gpu-memory-utilization", type=float, default=0.9,
                            help="GPU memory utilization (0.0-1.0, default: 0.9)")
    infer_parser.add_argument("--max-model-len", type=int, default=128000,
                            help="Maximum model context length (default: 128000, balance between performance and memory)")
    infer_parser.add_argument("--max-images-per-prompt", type=int, default=10,
                            help="Maximum images per prompt (default: 10)")
    
    # Generation parameters
    infer_parser.add_argument("--max-new-tokens", type=int, default=32768, 
                            help="Maximum number of tokens to generate (default: 2048)")
    infer_parser.add_argument("--temperature", type=float, default=0.7, 
                            help="Temperature for sampling (default: 0.7 for greedy-like decoding)")
    infer_parser.add_argument("--top-p", type=float, default=0.8, 
                            help="Top-p for sampling (default: 0.8 for greedy-like decoding)")
    infer_parser.add_argument("--top-k", type=int, default=20, 
                            help="Top-k for sampling (default: 20 for greedy decoding)")
    infer_parser.add_argument("--repetition-penalty", type=float, default=1.0,
                            help="Repetition penalty (default: 1.0, increase to 1.2-1.5 to reduce repetition)")
    infer_parser.add_argument("--presence-penalty", type=float, default=1.5,
                            help="Presence penalty (default: 1.5, range: 0.0-2.0, penalize tokens that have already appeared)")
    
    # Evaluation parser
    eval_parser = subparsers.add_parser("eval", help="Run evaluation")
    eval_parser.add_argument("--data-dir", type=str, help="The absolute path of MMMU_DEV_VAL.tsv")
    eval_parser.add_argument("--input-file", type=str, required=True, help="Input file with inference results")
    eval_parser.add_argument("--output-file", type=str, required=True, help="Output file path")
    eval_parser.add_argument("--dataset", type=str, default="MMMU_DEV_VAL", help="Dataset name")
    eval_parser.add_argument("--eval-model", type=str, default="gpt-3.5-turbo-0125",
                            help="Model to use for evaluation (default: gpt-3.5-turbo-0125)")
    eval_parser.add_argument("--api-type", type=str, default="dash", choices=["dash", "mit"],
                            help="API type for evaluation")
    eval_parser.add_argument("--nproc", type=int, default=4, help="Number of processes to use")
    
    args = parser.parse_args()
    
    # Set data directory if provided
    if hasattr(args, 'data_dir') and args.data_dir:
        os.environ['LMUData'] = args.data_dir
    
    # Automatically set tensor_parallel_size
    if args.command == 'infer' and args.tensor_parallel_size is None:
        args.tensor_parallel_size = torch.cuda.device_count()
        print(f"Auto-set tensor_parallel_size to {args.tensor_parallel_size}")
    
    if args.command == 'infer':
        run_inference(args)
    elif args.command == 'eval':
        run_evaluation(args)
    else:
        parser.print_help()

if __name__ == "__main__":
    main()