vintern_chat.py 16 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import torch
from transformers import AutoTokenizer, AutoConfig, AutoModel, CLIPImageProcessor
import warnings
from PIL import Image
from .base import BaseModel
from ..smp import *
from ..dataset import DATASET_TYPE, DATASET_MODALITY
import pandas as pd
import string
import torch.distributed as dist
import torchvision.transforms as T
import transformers

from torchvision.transforms.functional import InterpolationMode
import re


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=4, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_file, input_size=448, max_num=6, upscale=False):
    image = Image.open(image_file).convert('RGB')
    if upscale:
        image = image.resize((image.width * 2, image.height * 2), Image.BILINEAR)
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values


class VinternChat(BaseModel):

    INSTALL_REQ = False
    INTERLEAVE = True

    def __init__(self, model_path='5CD-AI/Vintern-3B-beta', load_in_8bit=False, **kwargs):
        assert model_path is not None
        assert version_cmp(transformers.__version__, '4.36.2', 'ge')

        self.model_path = model_path
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)

        # Regular expression to match the pattern 'Image' followed by a number, e.g. Image1
        self.pattern = r'Image(\d+)'
        # Replacement pattern to insert a hyphen between 'Image' and the number, e.g. Image-1
        self.replacement = r'Image-\1'

        # Convert InternVL2 response to dataset format
        # e.g. Image1 -> Image-1

        # Regular expression to match the pattern 'Image-' followed by a number
        self.reverse_pattern = r'Image-(\d+)'
        # Replacement pattern to remove the hyphen (Image-1 -> Image1)
        self.reverse_replacement = r'Image\1'

        device = torch.cuda.current_device()
        self.device = device
        self.model = AutoModel.from_pretrained(
            model_path,
            torch_dtype=torch.bfloat16,
            trust_remote_code=True,
            load_in_8bit=load_in_8bit).eval()
        if not load_in_8bit:
            self.model = self.model.to(device)

        self.image_size = self.model.config.vision_config.image_size
        kwargs_default = dict(do_sample=False, max_new_tokens=1024, top_p=None, num_beams=3)
        kwargs_default.update(kwargs)
        self.kwargs = kwargs_default

        warnings.warn(f'Following kwargs received: {self.kwargs}, will use as generation config. ')

    def use_custom_prompt(self, dataset):
        if dataset is None:
            return False
        if listinstr(['MMDU', 'MME-RealWorld', 'MME-RealWorld-CN'], dataset):
            # For Multi-Turn we don't have custom prompt
            return False
        if DATASET_MODALITY(dataset) == 'VIDEO':
            # For Video benchmarks we don't have custom prompt at here
            return False
        else:
            return True

    def build_multi_choice_prompt(self, line, dataset=None):
        question = line['question']
        hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
        if hint is not None:
            question = hint + '\n' + question

        options = {
            cand: line[cand]
            for cand in string.ascii_uppercase
            if cand in line and not pd.isna(line[cand])
        }
        for key, item in options.items():
            question += f'\n{key}. {item}'
        prompt = question

        if len(options):
            prompt += '\n请直接回答选项字母。' if cn_string(
                prompt) else "\nAnswer with the option's letter from the given choices directly."
        else:
            prompt += '\n请直接回答问题。' if cn_string(prompt) else '\nAnswer the question directly.'

        return prompt

    def build_video_prompt(self, prompt, dataset=None, max_frames=64):
        for start in range(0, max_frames, 8):
            images_to_remove = ''.join([f'<Image-{i}>' for i in range(start + 1, start + 9)])
            prompt = prompt.replace(images_to_remove, '')
        for i in range(max_frames):
            prompt = prompt.replace(f'Image-{i + 1}', f'Frame-{i + 1}')
        if listinstr(['MMBench-Video'], dataset):
            prompt = prompt.replace('\nAnswer:', '')
        elif listinstr(['Video-MME'], dataset):
            prompt = prompt.replace('\nAnswer:', '')
            prompt += "\nAnswer with the option's letter from the given choices directly."
        elif listinstr(['MVBench'], dataset):
            prompt = prompt.replace('Best option:(', '')

        return prompt

    def build_prompt(self, line, dataset=None):
        assert self.use_custom_prompt(dataset)
        assert dataset is None or isinstance(dataset, str)
        tgt_path = self.dump_image(line, dataset)

        kwargs_default = dict(do_sample=False, max_new_tokens=1024, top_p=None, num_beams=3)

        if listinstr(['MTVQA'], dataset):
            kwargs_default["max_new_tokens"] = 256

        if listinstr(['MMMU_DEV_VAL','MMMU_TEST'], dataset):
            kwargs_default["num_beams"] = 1

        self.kwargs = kwargs_default

        if dataset is not None and DATASET_TYPE(dataset) == 'Y/N':
            question = line['question']
            if listinstr(['MME'], dataset):
                prompt = question + ' Answer the question using a single word or phrase.'
            elif listinstr(['HallusionBench'], dataset):
                prompt = question + ' Please answer yes or no. Answer the question using a single word or phrase.'
            else:
                prompt = line['question']
        elif dataset is not None and DATASET_TYPE(dataset) == 'MCQ':
            prompt = self.build_multi_choice_prompt(line, dataset)
        elif dataset is not None and DATASET_TYPE(dataset) == 'VQA':
            question = line['question']
            if listinstr(['MathVista', 'MathVision', 'VCR', 'MTVQA', 'MMVet', 'MathVerse'], dataset):
                prompt = question
            elif listinstr(['LLaVABench'], dataset):
                prompt = question + '\nAnswer this question in detail.'
            else:
                prompt = question + '\nAnswer the question using a single word or phrase.'
        else:
            prompt = line['question']
        message = [dict(type='text', value=prompt)]
        message.extend([dict(type='image', value=s) for s in tgt_path])
        return message

    def set_max_num(self, dataset):
        if dataset is None:
            self.max_num = 1
            return

        # res_1_datasets = ['MMBench-Video', 'Video-MME', 'MVBench', 'Video']
        res_12_datasets = ['ChartQA_TEST', 'MMMU_DEV_VAL', 'MMMU_TEST', 'MME-RealWorld',
                           'MME-RealWorld', 'VCR_EN', 'VCR_ZH']
        res_18_datasets = ['DocVQA_VAL', 'DocVQA_TEST']
        res_24_datasets = ['InfoVQA_VAL', 'InfoVQA_TEST', 'OCRBench', 'HRBench4K', 'HRBench8K']
        if DATASET_MODALITY(dataset) == 'VIDEO':
            self.max_num = 1
        elif listinstr(res_12_datasets, dataset):
            self.max_num = 6  # 12
        elif listinstr(res_18_datasets, dataset):
            self.max_num = 6  # 18
        elif listinstr(res_24_datasets, dataset):
            self.max_num = 6  # 24
        elif listinstr(["MME"], dataset):
            self.max_num = 6  # 24
        else:
            self.max_num = 6  # 6

    def generate_v2(self, message, dataset=None):
        image_num = len([x for x in message if x['type'] == 'image'])
        if image_num == 1:
            prompt = '<image>\n' + '\n'.join([x['value'] for x in message if x['type'] == 'text'])
        else:
            prompt, image_idx = '', 1
            for x in message:
                if x['type'] == 'text':
                    prompt += x['value']
                elif x['type'] == 'image':
                    prompt += f'<Image-{image_idx}>'
                    image_idx += 1
            prompt = '\n'.join([f'Image-{i + 1}: <image>' for i in range(image_num)]) + '\n' + prompt

        if dataset is not None and DATASET_MODALITY(dataset) == 'VIDEO':
            prompt = self.build_video_prompt(prompt, dataset)

        if image_num > 1:
            image_path = [x['value'] for x in message if x['type'] == 'image']
            num_patches_list = []
            pixel_values_list = []
            for image_idx, file_name in enumerate(image_path):
                upscale_flag = image_idx == 0 and dataset is not None and listinstr(['MMMU_DEV_VAL'], dataset)
                curr_pixel_values = load_image(
                    file_name, max_num=self.max_num, upscale=upscale_flag).to(self.device).to(torch.bfloat16)
                num_patches_list.append(curr_pixel_values.size(0))
                pixel_values_list.append(curr_pixel_values)
            pixel_values = torch.cat(pixel_values_list, dim=0)
        elif image_num == 1:
            image_path = [x['value'] for x in message if x['type'] == 'image'][0]
            upscale_flag = dataset is not None and listinstr(['MMMU_DEV_VAL'], dataset)
            pixel_values = load_image(
                image_path, max_num=self.max_num, upscale=upscale_flag).to(self.device).to(torch.bfloat16)
            num_patches_list = [pixel_values.size(0)]
        else:
            pixel_values = None
            num_patches_list = []

        with torch.no_grad():
            response = self.model.chat(
                self.tokenizer,
                pixel_values=pixel_values,
                num_patches_list=num_patches_list,
                question=prompt,
                generation_config=self.kwargs,
                verbose=False
            )
        return response

    def generate_inner(self, message, dataset=None):
        self.set_max_num(dataset)
        return self.generate_v2(message, dataset)

    def build_history(self, message):
        # Global Variables
        image_path = []
        image_cnt = 0

        def concat_tilist(tilist):
            nonlocal image_cnt  # Declare image_cnt as nonlocal to modify it
            prompt = ''
            for item in tilist:
                # Substitute the pattern in the text
                if item['type'] == 'text':
                    prompt += re.sub(self.pattern, self.replacement, item['value'])
                elif item['type'] == 'image':
                    image_cnt += 1
                    prompt += '<image>\n'
                    image_path.append(item['value'])
            return prompt

        # Only previous messages
        assert len(message) % 2 == 0
        history = []
        for i in range(len(message) // 2):
            m1, m2 = message[2 * i], message[2 * i + 1]
            assert m1['role'] == 'user' and m2['role'] == 'assistant'
            history.append((concat_tilist(m1['content']), concat_tilist(m2['content'])))

        return history, image_path, image_cnt

    def chat_inner_v2(self, message, dataset=None):

        image_cnt = 0
        if len(message) > 1:
            history, image_path, image_cnt = self.build_history(message[:-1])
        else:
            history, image_path, image_cnt = None, [], 1
        current_msg = message[-1]
        question = ''

        # If message is just text in the conversation
        if len(current_msg['content']) == 1 and current_msg['content'][0]['type'] == 'text':
            question = current_msg['content'][0]['value']
            question = re.sub(self.pattern, self.replacement, question)  # Fix pattern as per InternVL
        else:
            for msg in current_msg['content']:
                if msg['type'] == 'text':
                    question += re.sub(self.pattern, self.replacement, msg['value'])
                elif msg['type'] == 'image':
                    image_cnt += 1
                    question += '<image>\n'
                    image_path.append(msg['value'])

        if image_cnt > 1:
            num_patches_list = []
            pixel_values_list = []
            for image_idx, file_name in enumerate(image_path):
                upscale_flag = image_idx == 0 and dataset is not None and listinstr(['MMMU_DEV_VAL'], dataset)
                curr_pixel_values = load_image(
                    file_name, max_num=1, upscale=upscale_flag).to(self.device).to(torch.bfloat16)
                num_patches_list.append(curr_pixel_values.size(0))
                pixel_values_list.append(curr_pixel_values)
            pixel_values = torch.cat(pixel_values_list, dim=0)
        elif image_cnt == 1:
            upscale_flag = dataset is not None and listinstr(['MMMU_DEV_VAL'], dataset)
            pixel_values = load_image(
                image_path, max_num=self.max_num, upscale=upscale_flag).to(self.device).to(torch.bfloat16)
            num_patches_list = [pixel_values.size(0)]
        else:
            pixel_values = None
            num_patches_list = []

        response, history = self.model.chat(
            self.tokenizer,
            pixel_values=pixel_values,
            num_patches_list=num_patches_list,
            question=question,
            generation_config=self.kwargs,
            history=history,
            return_history=True
        )

        response = re.sub(self.reverse_pattern, self.reverse_replacement, response)

        return response

    def chat_inner(self, message, dataset=None):
        self.set_max_num(dataset)
        kwargs_default = dict(do_sample=False, max_new_tokens=512, top_p=None, num_beams=3)
        self.kwargs = kwargs_default
        return self.chat_inner_v2(message, dataset)