mplug_owl3.py 13 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import torch
from .base import BaseModel
from ..smp import *
from ..dataset import DATASET_TYPE
from torchvision import transforms
from transformers import AutoTokenizer, AutoModel

import io
import random
import numpy as np
import math


def get_frame_indices(num_frames, vlen, sample='rand', fix_start=None, input_fps=1, max_num_frames=-1):
    if sample in ['rand', 'middle']:
        acc_samples = min(num_frames, vlen)
        # split the video into `acc_samples` intervals, and sample from each interval.
        intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
        ranges = []
        for idx, interv in enumerate(intervals[:-1]):
            ranges.append((interv, intervals[idx + 1] - 1))
        if sample == 'rand':
            try:
                frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
            except:
                frame_indices = np.random.permutation(vlen)[:acc_samples]
                frame_indices.sort()
                frame_indices = list(frame_indices)
        elif fix_start is not None:
            frame_indices = [x[0] + fix_start for x in ranges]
        elif sample == 'middle':
            frame_indices = [(x[0] + x[1]) // 2 for x in ranges]
        else:
            raise NotImplementedError

        if len(frame_indices) < num_frames:  # padded with last frame
            padded_frame_indices = [frame_indices[-1]] * num_frames
            padded_frame_indices[:len(frame_indices)] = frame_indices
            frame_indices = padded_frame_indices

    elif 'fps' in sample:  # fps0.5, sequentially sample frames at 0.5 fps
        output_fps = float(sample[3:])
        duration = float(vlen) / input_fps
        delta = 1 / output_fps  # gap between frames, this is also the clip length each frame represents
        frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
        frame_indices = np.around(frame_seconds * input_fps).astype(int)
        frame_indices = [e for e in frame_indices if e < vlen]
        if max_num_frames > 0 and len(frame_indices) > max_num_frames:
            frame_indices = frame_indices[:max_num_frames]
            # frame_indices = np.linspace(0 + delta / 2, duration + delta / 2, endpoint=False, num=max_num_frames)
    elif 'interval' in sample:
        if num_frames == 1:
            frame_indices = [random.randint(0, vlen - 1)]
        else:
            # transform FPS
            interval = 8
            clip_length = num_frames * interval * input_fps / 30
            max_idx = max(vlen - clip_length, 0)
            start_idx = random.uniform(0, max_idx)
            end_idx = start_idx + clip_length - 1

            frame_indices = torch.linspace(start_idx, end_idx, num_frames)
            frame_indices = torch.clamp(frame_indices, 0, vlen - 1).long().tolist()
    else:
        raise ValueError
    return frame_indices


def get_frame_indices_start_end(num_frames, vlen, fps, start_time, end_time):
    start_idx = max(int(fps * start_time), 0) if start_time is not None and not math.isnan(start_time) else 0
    end_idx = min(int(fps * end_time), vlen) if end_time is not None and not math.isnan(end_time) else vlen
    clip_len = end_idx - start_idx

    acc_samples = min(num_frames, clip_len)
    # split the video into `acc_samples` intervals, and sample from each interval.
    intervals = np.linspace(start=start_idx, stop=end_idx, num=acc_samples + 1).astype(int)
    ranges = []
    for idx, interv in enumerate(intervals[:-1]):
        ranges.append((interv, intervals[idx + 1] - 1))

    try:
        frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
    except:
        frame_indices = np.random.permutation(list(range(start_idx, end_idx)))[:acc_samples]
        frame_indices.sort()
        frame_indices = list(frame_indices)

    if len(frame_indices) < num_frames:  # padded with last frame
        padded_frame_indices = [frame_indices[-1]] * num_frames
        padded_frame_indices[:len(frame_indices)] = frame_indices
        frame_indices = padded_frame_indices

    return frame_indices


def read_frames_decord(
    video_path, width=None, height=None,
    num_frames=8, sample='rand', fix_start=None,
    max_num_frames=-1, start_time=None, end_time=None
):
    import decord
    decord.bridge.set_bridge('torch')
    if video_path.lower().endswith('.webm'):
        # a workaround for webm, large/auto num_threads will cause error.
        num_threads = 2
    else:
        num_threads = 0

    if width is not None and height is not None:
        video_reader = decord.VideoReader(video_path, width=width, height=height, num_threads=num_threads)
    else:
        video_reader = decord.VideoReader(video_path, num_threads=num_threads)
    vlen = len(video_reader)
    fps = video_reader.get_avg_fps()
    if start_time and end_time:
        frame_indices = get_frame_indices_start_end(
            num_frames, vlen, fps, start_time, end_time
        )
    else:
        frame_indices = get_frame_indices(
            num_frames, vlen, sample=sample, fix_start=fix_start,
            input_fps=fps, max_num_frames=max_num_frames
        )
    frames = video_reader.get_batch(frame_indices)
    if isinstance(frames, torch.Tensor):
        frames = frames.numpy()  # (T, H, W, C), torch.uint8
    else:
        print(frames.shape)
        frames = frames.asnumpy()
    timestamp = {
        'num_frames': len(frame_indices),
        'timestamp': ', '.join([str(round(f / fps, 1)) for f in frame_indices])
    }
    return frames, timestamp


class mPLUG_Owl3(BaseModel):
    # No separate model module is required, but the dependencies must be met.
    # https://github.com/X-PLUG/mPLUG-Owl/blob/main/mPLUG-Owl3/requirements.txt
    INSTALL_REQ = True
    INTERLEAVE = True
    INSTALL_REQ_TXT = 'https://github.com/X-PLUG/mPLUG-Owl/blob/main/mPLUG-Owl3/requirements.txt'

    def __init__(self, model_path=None, **kwargs):
        assert model_path is not None
        self.tokenizer = AutoTokenizer.from_pretrained(
            model_path
        )

        self.model = AutoModel.from_pretrained(
            model_path,
            attn_implementation='sdpa',
            torch_dtype=torch.half,
            trust_remote_code=True
        )
        self.model.eval().cuda()
        self.processor = self.model.init_processor(self.tokenizer)
        self.logger = get_logger('mPLUG_Owl3')
        if self.INSTALL_REQ:
            self.logger.info(
                f'Please remember to meet the requirements first\n'
                f'Here: {self.INSTALL_REQ_TXT}'
            )

    def use_custom_prompt(self, dataset):
        assert dataset is not None
        if listinstr(['MMMU'], dataset):
            return False
        if listinstr(['MVBench', 'MMVet'], dataset):
            return True
        return False

    def save_video_into_images(self, line, num_frames=16, dataset_class=None):
        video_url = {
            'video': osp.join(line['prefix'], line['video']),
            'num_frames': num_frames,
            'bound': line.get('bound', None)
        }
        if osp.isdir(video_url['video']):
            frame_paths = []
            max_frame = len(os.listdir(video_url['video']))
            fps = 3
            if video_url['bound']:
                start, end = line['start'], line['end']
            else:
                start, end = -100000, 100000
            start_idx = max(1, round(start * fps))
            end_idx = min(round(end * fps), max_frame)
            seg_size = float(end_idx - start_idx) / num_frames
            frame_indices = np.array([
                int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
                for idx in range(num_frames)
            ])

            for frame_index in frame_indices:
                img = os.path.join(video_url['video'], f'{frame_index:05d}.jpg')
                frame_paths.append(img)

            return frame_paths

        if isinstance(video_url, dict):
            if video_url['bound']:
                start_time = line['start']
                end_time = line['end']
            else:
                start_time = None
                end_time = None
            num_frames = video_url.get('num_frames', num_frames)
            video_url = video_url['video']
        else:
            start_time = None
            end_time = None
            video_url = str(video_url)

        if not osp.exists(video_url):  # for MVBench_MP4
            video_url = osp.join(dataset_class.data_root, video_url)
        video, timestamp = read_frames_decord(
            video_url, num_frames=num_frames, sample='middle', start_time=start_time, end_time=end_time
        )

        to_pil = transforms.ToPILImage()
        frames = [to_pil(video[ti]) for ti in range(video.shape[0])]
        lmu_root = LMUDataRoot()
        frame_root = osp.join(lmu_root, 'images', dataset_class.dataset_name, 'mplug_owl3')
        frame_root = osp.join(frame_root, video_url.split('/')[-1].split('.')[0])
        os.makedirs(frame_root, exist_ok=True)
        frame_tmpl = 'frame-{}-of-{}.jpg'
        frame_paths = [osp.join(frame_root, frame_tmpl.format(i, num_frames)) for i in range(1, num_frames + 1)]
        for im, pth in zip(frames, frame_paths):
            if not osp.exists(pth):
                im.save(pth)

        return frame_paths

    # Currently same to mPLUG_Owl2
    def build_prompt(self, line, dataset=None, num_frames=16, video_llm=False):
        if not isinstance(dataset, str):
            dataset_class = dataset
            dataset = dataset_class.dataset_name
        assert dataset is None or isinstance(dataset, str)
        assert self.use_custom_prompt(dataset)
        if dataset_class.MODALITY == 'VIDEO':
            if listinstr(['MVBench'], dataset):
                tgt_path = self.save_video_into_images(line, num_frames, dataset_class)
            else:
                tgt_path = dataset_class.save_video_into_images(line, num_frames)
            if type(line['candidates']) is not list:
                line['candidates'] = eval(line['candidates'])
            for idx, c in enumerate(line['candidates']):
                line[chr(ord('A') + idx)] = c
        else:
            tgt_path = self.dump_image(line, dataset)
        question = line['question']
        if dataset == 'MMVet':
            prompt = question + '\nAnswer the question directly. '
        elif listinstr(['MCQ', 'Video-MCQ'], DATASET_TYPE(dataset)):
            options = {
                cand: line[cand]
                for cand in string.ascii_uppercase
                if cand in line and not pd.isna(line[cand])
            }
            options_prompt = ''
            for key, item in options.items():
                options_prompt += f'{key}. {item}\n'

            hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
            prompt = f'Hint: {hint}\n' if hint is not None else ''
            prompt += f'{question}\n'
            prompt += (
                f'{options_prompt}\nAnswer with the option’s letter from the given choices directly. '
                if len(options) else 'Answer the question directly. '
            )
        else:
            raise NotImplementedError

        message = [dict(type='text', value=prompt)]
        message.extend([dict(type='image', value=s) for s in tgt_path])
        return message

    def preproc_image(self, fname, dataset=None):
        from PIL import Image
        image = Image.open(fname).convert('RGB')
        # resize to max_size
        max_size = 448 * 16
        if max(image.size) > max_size and not listinstr(['MVBench'], dataset):
            w, h = image.size
            if w > h:
                new_w = max_size
                new_h = int(h * max_size / w)
            else:
                new_h = max_size
                new_w = int(w * max_size / h)
            image = image.resize((new_w, new_h), resample=Image.BICUBIC)
        return image

    def generate_inner(self, message, dataset=None):
        num_images = len([x for x in message if x['type'] == 'image'])
        assert num_images >= 0

        images = []
        prompt_full = ''

        for msg in message:
            if msg['type'] == 'image':
                images.append(msg['value'])
                prompt_full += '<|image|>'
            elif msg['type'] == 'text':
                prompt_full += msg['value']

        needed_messages = [
            {'role': 'user', 'content': prompt_full},
            {'role': 'assistant', 'content': ''}
        ]

        images = [self.preproc_image(fname, dataset) for fname in images]

        inputs = self.processor(needed_messages, images=images, videos=None, cut_enable=False)

        inputs.to('cuda')
        if listinstr(['MVBench'], dataset):
            inputs.update({
                'tokenizer': self.tokenizer,
                'max_new_tokens': 100,
                'decode_text': True,
                'do_sample': True,
                'top_k': 1,
            })
        else:
            inputs.update({
                'tokenizer': self.tokenizer,
                'max_new_tokens': 1024,
                'decode_text': True,
            })

        g = self.model.generate(**inputs)
        return g[0]