moondream.py 6.35 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch
import re
from PIL import Image
from abc import abstractproperty
import sys
import os.path as osp
from .base import BaseModel
from ..smp import *
from ..dataset import DATASET_TYPE
import copy


class Moondream1(BaseModel):
    INSTALL_REQ = False
    INTERLEAVE = False

    def __init__(self,
                 model_path='vikhyatk/moondream1',
                 **kwargs):
        try:
            from transformers import AutoModelForCausalLM, CodeGenTokenizerFast as Tokenizer
        except Exception as e:
            logging.critical(
                "Please install Transformers version 4.36.2 by running: 'pip install transformers==4.36.2', "
                "please intall torchvision>=0.16.")
            raise e

        assert osp.exists(model_path) or splitlen(model_path) == 2

        self.model = AutoModelForCausalLM.from_pretrained(
            model_path,
            trust_remote_code=True,
            torch_dtype=torch.float16,
            device_map='cuda')
        self.tokenizer = Tokenizer.from_pretrained(model_path)

        default_kwargs = dict(max_new_tokens=512)
        default_kwargs.update(kwargs)
        self.kwargs = default_kwargs

        warnings.warn(f'Following kwargs received: {self.kwargs}, will use as generation config. ')
        torch.cuda.empty_cache()

    def generate_inner(self, message, dataset=None):
        prompt, img = self.message_to_promptimg(message)
        enc_image = self.model.encode_image(Image.open(img))

        prompt_wtmpl = f'<image>\n\nQuestion: {prompt}\n\nAnswer:'
        answer = self.model.generate(
            enc_image, prompt_wtmpl, eos_text='<END>', tokenizer=self.tokenizer, **self.kwargs)[0]
        cleaned_answer = re.sub('<$', '', re.sub('END$', '', answer)).strip()
        return cleaned_answer

    def use_custom_prompt(self, dataset):
        assert dataset is not None
        if listinstr(['MMMU'], dataset):
            return False
        if DATASET_TYPE(dataset) == 'MCQ' or dataset == 'MMVet':
            return True
        return False

    def build_prompt(self, line, dataset=None):
        assert dataset is None or isinstance(dataset, str)
        assert self.use_custom_prompt(dataset)
        tgt_path = self.dump_image(line, dataset)
        question = line['question']
        if dataset == 'MMVet':
            prompt = question + '\nAnswer the question directly. '
        elif DATASET_TYPE(dataset) == 'MCQ':
            options = {
                cand: line[cand]
                for cand in string.ascii_uppercase
                if cand in line and not pd.isna(line[cand])
            }
            options_prompt = ''
            for key, item in options.items():
                options_prompt += f'{key}. {item}\n'

            hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
            prompt = f'Hint: {hint}\n' if hint is not None else ''
            prompt += f'{question}\n'
            prompt += (
                f'{options_prompt}\nAnswer with the option’s letter from the given choices directly. '
                if len(options) else 'Answer the question directly. '
            )
        else:
            raise NotImplementedError

        message = [dict(type='text', value=prompt)]
        message.extend([dict(type='image', value=s) for s in tgt_path])
        return message


class Moondream2(BaseModel):
    INSTALL_REQ = False
    INTERLEAVE = False

    def __init__(self,
                 model_path="vikhyatk/moondream2",
                 revision="2024-08-26",
                 **kwargs):
        try:
            from transformers import AutoModelForCausalLM, AutoTokenizer
        except Exception as e:
            logging.critical('''Please install Transformers version 4.44 by running: "pip install transformers==4.44.0",
            please intall torchvision>=0.16.''')
            raise e

        assert osp.exists(model_path) or splitlen(model_path) == 2

        self.model = AutoModelForCausalLM.from_pretrained(
            model_path,
            trust_remote_code=True,
            torch_dtype=torch.float16,
            device_map='cuda',
            revision=revision)
        self.tokenizer = AutoTokenizer.from_pretrained(model_path)

        default_kwargs = dict(max_new_tokens=512)
        default_kwargs.update(kwargs)
        self.kwargs = default_kwargs

        warnings.warn(f'Following kwargs received: {self.kwargs}, will use as generation config. ')
        torch.cuda.empty_cache()

    def generate_inner(self, message, dataset=None):
        prompt, img = self.message_to_promptimg(message)
        enc_image = self.model.encode_image(Image.open(img))

        prompt_wtmpl = f'<image>\n\nQuestion: {prompt}\n\nAnswer:'
        answer = self.model.generate(
            enc_image, prompt_wtmpl, tokenizer=self.tokenizer, **self.kwargs)[0]
        cleaned_answer = answer.strip()
        return cleaned_answer

    def use_custom_prompt(self, dataset):
        assert dataset is not None
        if listinstr(['MMMU'], dataset):
            return False
        if DATASET_TYPE(dataset) == 'MCQ' or dataset == 'MMVet':
            return True
        return False

    def build_prompt(self, line, dataset=None):
        assert dataset is None or isinstance(dataset, str)
        assert self.use_custom_prompt(dataset)
        tgt_path = self.dump_image(line, dataset)
        question = line['question']
        if dataset == 'MMVet':
            prompt = question + '\nAnswer the question directly. '
        elif DATASET_TYPE(dataset) == 'MCQ':
            options = {
                cand: line[cand]
                for cand in string.ascii_uppercase
                if cand in line and not pd.isna(line[cand])
            }
            options_prompt = ''
            for key, item in options.items():
                options_prompt += f'{key}. {item}\n'

            hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
            prompt = f'Hint: {hint}\n' if hint is not None else ''
            prompt += f'{question}\n'
            prompt += (
                f'{options_prompt}\nAnswer with the option’s letter from the given choices directly. '
                if len(options) else 'Answer the question directly. '
            )
        else:
            raise NotImplementedError

        message = [dict(type='text', value=prompt)]
        message.extend([dict(type='image', value=s) for s in tgt_path])
        return message