monkey.py 6.22 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import warnings
from .base import BaseModel
from ..dataset import DATASET_TYPE


class Monkey(BaseModel):

    INSTALL_REQ = False
    INTERLEAVE = False

    def __init__(self, model_path='echo840/Monkey', **kwargs):
        assert model_path is not None
        self.model_path = model_path
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        model = AutoModelForCausalLM.from_pretrained(model_path, device_map='cpu', trust_remote_code=True).eval()
        self.model = model.cuda()
        self.kwargs = kwargs
        warnings.warn(f'Following kwargs received: {self.kwargs}, will use as generation config. ')
        torch.cuda.empty_cache()

    def generate_vanilla(self, image_path, prompt):
        cur_prompt = f'<img>{image_path}</img> {prompt} Answer: '
        input_ids = self.tokenizer(cur_prompt, return_tensors='pt', padding='longest')
        attention_mask = input_ids.attention_mask
        input_ids = input_ids.input_ids

        output_ids = self.model.generate(
            input_ids=input_ids.cuda(),
            attention_mask=attention_mask.cuda(),
            do_sample=False,
            num_beams=1,
            max_new_tokens=512,
            min_new_tokens=1,
            length_penalty=1,
            num_return_sequences=1,
            output_hidden_states=True,
            use_cache=True,
            pad_token_id=self.tokenizer.eod_id,
            eos_token_id=self.tokenizer.eod_id,
        )
        response = self.tokenizer.decode(
            output_ids[0][input_ids.size(1):].cpu(),
            skip_special_tokens=True
        ).strip()
        return response

    def generate_multichoice(self, image_path, prompt):
        cur_prompt = f'<img>{image_path}</img> \n {prompt} Answer: '
        input_ids = self.tokenizer(cur_prompt, return_tensors='pt', padding='longest')
        attention_mask = input_ids.attention_mask
        input_ids = input_ids.input_ids

        output_ids = self.model.generate(
            input_ids=input_ids.cuda(),
            attention_mask=attention_mask.cuda(),
            do_sample=False,
            num_beams=1,
            max_new_tokens=10,
            min_new_tokens=1,
            length_penalty=1,
            num_return_sequences=1,
            output_hidden_states=True,
            use_cache=True,
            pad_token_id=self.tokenizer.eod_id,
            eos_token_id=self.tokenizer.eod_id,
        )
        response = self.tokenizer.decode(
            output_ids[0][input_ids.size(1):].cpu(),
            skip_special_tokens=True
        ).strip()
        return response

    def generate_inner(self, message, dataset=None):
        prompt, image_path = self.message_to_promptimg(message, dataset=dataset)
        if dataset is None:
            return self.generate_vanilla(image_path, prompt)
        assert isinstance(dataset, str)
        if DATASET_TYPE(dataset) == 'MCQ' or DATASET_TYPE(dataset) == 'Y/N' or dataset == 'HallusionBench':
            return self.generate_multichoice(image_path, prompt)
        else:
            return self.generate_vanilla(image_path, prompt)


class MonkeyChat(BaseModel):

    INSTALL_REQ = False
    INTERLEAVE = False

    def __init__(self, model_path='echo840/Monkey-Chat', **kwargs):
        assert model_path is not None
        self.model_path = model_path
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        model = AutoModelForCausalLM.from_pretrained(model_path, device_map='cpu', trust_remote_code=True).eval()
        self.model = model.cuda()
        self.kwargs = kwargs

        self.tokenizer.padding_side = 'left'
        self.tokenizer.pad_token_id = self.tokenizer.eod_id

        warnings.warn(f'Following kwargs received: {self.kwargs}, will use as generation config. ')
        torch.cuda.empty_cache()

    def generate_vanilla(self, image_path, prompt):
        cur_prompt = f'<img>{image_path}</img> {prompt} Answer: '
        input_ids = self.tokenizer(cur_prompt, return_tensors='pt', padding='longest')
        attention_mask = input_ids.attention_mask
        input_ids = input_ids.input_ids

        output_ids = self.model.generate(
            input_ids=input_ids.cuda(),
            attention_mask=attention_mask.cuda(),
            do_sample=False,
            num_beams=1,
            max_new_tokens=512,
            min_new_tokens=1,
            length_penalty=1,
            num_return_sequences=1,
            output_hidden_states=True,
            use_cache=True,
            pad_token_id=self.tokenizer.eod_id,
            eos_token_id=self.tokenizer.eod_id,
        )
        response = self.tokenizer.decode(
            output_ids[0][input_ids.size(1):].cpu(),
            skip_special_tokens=True
        ).strip()
        return response

    def generate_multichoice(self, image_path, prompt):
        cur_prompt = f'<img>{image_path}</img> \n {prompt} Answer: '
        input_ids = self.tokenizer(cur_prompt, return_tensors='pt', padding='longest')
        attention_mask = input_ids.attention_mask
        input_ids = input_ids.input_ids

        output_ids = self.model.generate(
            input_ids=input_ids.cuda(),
            attention_mask=attention_mask.cuda(),
            do_sample=False,
            num_beams=1,
            max_new_tokens=10,
            min_new_tokens=1,
            length_penalty=1,
            num_return_sequences=1,
            output_hidden_states=True,
            use_cache=True,
            pad_token_id=self.tokenizer.eod_id,
            eos_token_id=self.tokenizer.eod_id,
        )
        response = self.tokenizer.decode(
            output_ids[0][input_ids.size(1):].cpu(),
            skip_special_tokens=True
        ).strip()
        return response

    def generate_inner(self, message, dataset=None):
        prompt, image_path = self.message_to_promptimg(message, dataset=dataset)
        if dataset is None:
            return self.generate_vanilla(image_path, prompt)
        assert isinstance(dataset, str)
        if DATASET_TYPE(dataset) == 'MCQ' or DATASET_TYPE(dataset) == 'Y/N' or dataset == 'HallusionBench':
            return self.generate_multichoice(image_path, prompt)
        else:
            return self.generate_vanilla(image_path, prompt)