"lm_eval/tasks/yaml/arc_easy.yaml" did not exist on "487f7811a864faf401989f9ce8ebe129124e2c4b"
llama_vision.py 9.7 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch
from PIL import Image
import os.path as osp
import sys
from .base import BaseModel
from ..smp import *
from ..dataset import DATASET_TYPE


class llama_vision(BaseModel):

    INSTALL_REQ = False
    INTERLEAVE = False

    # This function is used to split Llama-3.2-90B
    def split_model(self):
        import math
        device_map = {}
        num_gpus = torch.cuda.device_count()
        rank, world_size = get_rank_and_world_size()
        num_gpus = num_gpus // world_size

        num_layers = 100
        # GPU0: -5, GPU-1: -7
        total_cost = num_layers + 5 + 7

        # Since the first GPU will be used for ViT, treat it as 0.8 GPU.
        num_layers_per_gpu = total_cost // num_gpus
        num_layers_per_gpu = [num_layers_per_gpu] * num_gpus
        # The total number of GPUs might be odd
        num_layers_per_gpu[-1] = total_cost - sum(num_layers_per_gpu[:-1])
        num_layers_per_gpu[0] -= 5
        num_layers_per_gpu[-1] -= 7

        layer_cnt = 0
        for i, num_layer in enumerate(num_layers_per_gpu):
            for j in range(num_layer):
                device_map[f'language_model.model.layers.{layer_cnt}'] = rank + world_size * i
                layer_cnt += 1

        device_map['vision_model'] = rank
        device_map['language_model.model.embed_tokens'] = rank
        device_map['language_model.model.rotary_emb'] = rank
        device_map['language_model.model.norm'] = rank + world_size * (num_gpus - 1)
        device_map['language_model.lm_head'] = rank + world_size * (num_gpus - 1)
        device_map['multi_modal_projector'] = rank + world_size * (num_gpus - 1)
        return device_map

    def __init__(self, model_path='meta-llama/Llama-3.2-11B-Vision-Instruct', **kwargs):
        try:
            from transformers import MllamaForConditionalGeneration, AutoProcessor
        except Exception as e:
            logging.critical('Please install transformers>=4.45.0 before using llama_vision.')
            raise e

        rank, world_size = get_rank_and_world_size()

        if '11b' in model_path.lower() and auto_split_flag():
            assert world_size == 1, 'We only support world_size == 1 when AUTO_SPLIT is set for Llama-3.2-11B'
            logging.warning('Currently, we only support to split the 11B model across all GPUs.')
            self.model = MllamaForConditionalGeneration.from_pretrained(
                model_path,
                torch_dtype=torch.bfloat16,
                device_map='auto',
            ).eval()
        elif '90b' in model_path.lower():
            device_map = self.split_model()
            self.model = MllamaForConditionalGeneration.from_pretrained(
                model_path,
                torch_dtype=torch.bfloat16,
                device_map=device_map,
            ).eval()
        else:
            self.model = MllamaForConditionalGeneration.from_pretrained(
                model_path,
                torch_dtype=torch.bfloat16,
                device_map='cpu',
            ).cuda().eval()

        self.device = 'cuda'
        self.processor = AutoProcessor.from_pretrained(model_path)
        if 'Instruct' in model_path:
            kwargs_default = dict(do_sample=True, temperature=0.6, top_p=0.9)
        else:
            kwargs_default = dict(do_sample=False, max_new_tokens=512, temperature=0.0, top_p=None, num_beams=1)
        kwargs.update(kwargs_default)
        print(f'Following kwargs received: {kwargs}, will use as generation config. ')
        self.kwargs = kwargs
        self.model_name = model_path

    def use_custom_prompt(self, dataset):
        if dataset is None:
            return False
        if listinstr(['AI2D', 'MMMU', 'MathVista', 'ChartQA', 'DocVQA'], dataset):
            # For Certain dataset we use custom prompt
            return True
        else:
            return False

    def build_prompt(self, line, dataset=None):
        assert self.use_custom_prompt(dataset)
        assert dataset is None or isinstance(dataset, str)
        tgt_path = self.dump_image(line, dataset)
        question = line['question']
        options = {
            cand: line[cand]
            for cand in string.ascii_uppercase
            if cand in line and not pd.isna(line[cand])
        }
        if listinstr(['AI2D'], dataset):
            self.kwargs['max_new_tokens'] = 400
            for key, item in options.items():
                question += f'\n{key}. {item}'
            if '11B' in self.model_name:
                prompt = (
                    f'Look at the scientific diagram carefully and answer the following question: {question}\n'
                    f'Think step by step and finally respond to the question '
                    f"with only the correct option number as \"FINAL ANSWER\"."
                    f"<cot_start>Let's think step by step."
                )
            elif '90B' in self.model_name:
                prompt = (
                    f'Look at the scientific diagram carefully and answer the following question: {question}\n'
                    f'Respond only with the correct option digit.'
                )
        elif listinstr(['MMMU'], dataset):
            self.kwargs['max_new_tokens'] = 2048
            options = '\n'.join([f'{key}. {item}' for key, item in options.items()])
            prompt = (
                f'Look at the image carefully and solve the following question step-by-step. '
                f'Question: {question} Options: {options} Indicate the correct answer at the end.'
            )
            for i in range(len(tgt_path)):
                prompt = prompt.replace(f'<image {i+1}>', '')
        elif listinstr(['MathVista'], dataset):
            self.kwargs['max_new_tokens'] = 2048
            prompt = f'{question}'
        elif listinstr(['ChartQA'], dataset):
            self.kwargs['max_new_tokens'] = 512
            if '11B' in self.model_name:
                prompt = (
                    f'You are provided a chart image and will be asked a question. '
                    f'You have to think through your answer and provide a step-by-step solution. '
                    f'Once you have the solution, write the final answer in at most a few words at the end '
                    f"with the phrase \"FINAL ANSWER:\". "
                    f"The question is: {question}<cot_start>Let's think step by step."
                )
            elif '90B' in self.model_name:
                prompt = (
                    f'You are provided a chart image and will be asked a question. '
                    f'Follow these steps carefully:\n '
                    f'Step 1: Analyze the question to understand what specific data or information is being asked for. '
                    f'Focus on whether the question is asking for a specific number or category '
                    f'from the chart image.\n '
                    f'Step 2: Identify any numbers, categories, or groups mentioned in the question '
                    f'and take note of them. Focus on detecting and matching them directly to the image. \n'
                    f'Step 3: Study the image carefully and find the relevant data corresponding to the categories '
                    f'or numbers mentioned. Avoid unnecessary assumptions or calculations; '
                    f'simply read the correct data from the image.\n '
                    f'Step 4: Develop a clear plan to solve the question by locating the right data. '
                    f'Focus only on the specific category or group that matches the question. \n'
                    f'Step 5: Use step-by-step reasoning to ensure you are referencing the correct numbers '
                    f'or data points from the image, avoiding unnecessary extra steps or interpretations.\n '
                    f"Step 6: Provide the final answer, starting with \"FINAL ANSWER:\" "
                    f'and using as few words as possible, '
                    f'simply stating the number or data point requested. \n\n '
                    f"The question is: {question}<cot_start>Let's think step by step."
                )
        elif listinstr(['DocVQA'], dataset):
            self.kwargs['max_new_tokens'] = 512
            prompt = (
                f'Read the text in the image carefully and answer the question '
                f'with the text as seen exactly in the image. '
                f'For yes/no questions, just respond Yes or No. '
                f'If the answer is numeric, just respond with the number and nothing else. '
                f'If the answer has multiple words, just respond with the words and absolutely nothing else. '
                f'Never respond in a sentence or a phrase.\n Question: {question}'
            )
        else:
            raise NotImplementedError(f'Dataset {dataset}) not supported.')

        message = [dict(type='text', value=prompt)]
        message.extend([dict(type='image', value=s) for s in tgt_path])
        return message

    def generate_inner(self, message, dataset=None):
        prompt, image_path = self.message_to_promptimg(message, dataset=dataset)

        image = Image.open(image_path)
        messages = [
            {'role': 'user', 'content': [
                {'type': 'image'},
                {'type': 'text', 'text': prompt}
            ]}
        ]
        input_text = self.processor.apply_chat_template(messages, add_generation_prompt=True)
        inputs = self.processor(image, input_text, return_tensors='pt').to(self.device)
        if not self.use_custom_prompt(dataset):
            if dataset is not None and DATASET_TYPE(dataset) in ['MCQ', 'Y/N']:
                self.kwargs['max_new_tokens'] = 128
            else:
                self.kwargs['max_new_tokens'] = 512
        output = self.model.generate(**inputs, **self.kwargs)
        return self.processor.decode(output[0][inputs['input_ids'].shape[1]:]).replace('<|eot_id|>', '')