inference_video.py 6.99 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
import torch.distributed as dist
from vlmeval.config import supported_VLM
from vlmeval.utils import track_progress_rich
from vlmeval.smp import *

FAIL_MSG = 'Failed to obtain answer via API.'


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str, nargs='+', required=True)
    parser.add_argument('--model', type=str, nargs='+', required=True)
    parser.add_argument('--nproc', type=int, default=4, required=True)
    parser.add_argument('--verbose', action='store_true')
    args = parser.parse_args()
    return args


# Only API model is accepted
def infer_data_api(model, work_dir, model_name, dataset, samples_dict={}, api_nproc=4):
    rank, world_size = get_rank_and_world_size()
    assert rank == 0 and world_size == 1
    dataset_name = dataset.dataset_name
    model = supported_VLM[model_name]() if isinstance(model, str) else model
    assert getattr(model, 'is_api', False)

    indices = list(samples_dict.keys())
    structs = [dataset.build_prompt(samples_dict[idx], video_llm=getattr(model, 'VIDEO_LLM', False)) for idx in indices]

    packstr = 'pack' if getattr(dataset, 'pack', False) else 'nopack'
    if dataset.nframe > 0:
        out_file = f'{work_dir}/{model_name}_{dataset_name}_{dataset.nframe}frame_{packstr}_supp.pkl'
    else:
        out_file = f'{work_dir}/{model_name}_{dataset_name}_{dataset.fps}fps_{packstr}_supp.pkl'
    res = load(out_file) if osp.exists(out_file) else {}

    structs = [s for i, s in zip(indices, structs) if i not in res or res[i] == FAIL_MSG]
    indices = [i for i in indices if i not in res or res[i] == FAIL_MSG]

    gen_func = model.generate
    structs = [dict(message=struct, dataset=dataset_name) for struct in structs]

    if len(structs):
        track_progress_rich(gen_func, structs, nproc=api_nproc, chunksize=api_nproc, save=out_file, keys=indices)

    res = load(out_file)
    return res


def infer_data(model, model_name, work_dir, dataset, out_file, verbose=False, api_nproc=4):
    res = load(out_file) if osp.exists(out_file) else {}
    rank, world_size = get_rank_and_world_size()
    dataset_name = dataset.dataset_name

    sample_indices = list(dataset.videos) if getattr(dataset, 'pack', False) else list(dataset.data['index'])
    samples = list(dataset.videos) if getattr(dataset, 'pack', False) else list(range(len(dataset.data)))
    sample_map = {i: s for i, s in zip(sample_indices, samples)}

    sample_indices_sub = sample_indices[rank::world_size]
    if np.all([idx in res for idx in sample_indices_sub]):
        return model
    sample_indices_subrem = [x for x in sample_indices_sub if x not in res]

    model = supported_VLM[model_name]() if isinstance(model, str) else model

    is_api = getattr(model, 'is_api', False)
    if is_api:
        assert world_size == 1
        supp = infer_data_api(
            model=model,
            work_dir=work_dir,
            model_name=model_name,
            dataset=dataset,
            samples_dict={k: sample_map[k] for k in sample_indices_subrem},
            api_nproc=api_nproc)
        for k in sample_indices_subrem:
            assert k in supp
        res.update(supp)
        dump(res, out_file)
        return model

    assert not getattr(dataset, 'pack', False), 'Current model not supported pack mode!'
    for i, idx in tqdm(enumerate(sample_indices_subrem)):
        if idx in res:
            continue
        if getattr(model, 'nframe', None) is not None and getattr(model, 'nframe', 0) > 0:
            if dataset.nframe > 0:
                if getattr(model, 'nframe', 0) != dataset.nframe:
                    print(f'{model_name} is a video-llm model, nframe is set to {dataset.nframe}, not using default')
                    setattr(model, 'nframe', dataset.nframe)
            elif getattr(model, 'fps', 0) == 0:
                raise ValueError(f'fps is not suitable for {model_name}')
            else:
                setattr(model, 'nframe', None)
        if getattr(model, 'fps', None) is not None and getattr(model, 'fps', 0) > 0:
            if dataset.fps > 0:
                if getattr(model, 'fps', 0) != dataset.fps:
                    print(f'{model_name} is a video-llm model, fps is set to {dataset.fps}, not using default')
                    setattr(model, 'fps', dataset.fps)
            elif getattr(model, 'nframe', 0) == 0:
                raise ValueError(f'nframe is not suitable for {model_name}')
            else:
                setattr(model, 'fps', None)
        if 'SUB_DATASET' in dataset.data.iloc[sample_map[idx]]:
            dataset_name = dataset.data.iloc[sample_map[idx]]['SUB_DATASET']
        if hasattr(model, 'use_custom_prompt') and model.use_custom_prompt(dataset_name):
            if dataset.nframe == 0:
                raise ValueError(f'nframe must be set for custom prompt, fps is not suitable for {model_name}')
            struct = model.build_prompt(
                dataset.data.iloc[sample_map[idx]], dataset=dataset, video_llm=getattr(model, 'VIDEO_LLM', False)
            )
        else:
            struct = dataset.build_prompt(
                sample_map[idx], video_llm=getattr(model, 'VIDEO_LLM', False)
            )
        response = model.generate(message=struct, dataset=dataset_name)
        torch.cuda.empty_cache()

        if verbose:
            print(response, flush=True)

        res[idx] = response
        if (i + 1) % 20 == 0:
            dump(res, out_file)

    res = {k: res[k] for k in sample_indices_sub}
    dump(res, out_file)
    return model


# A wrapper for infer_data, do the pre & post processing
def infer_data_job_video(
        model,
        work_dir,
        model_name,
        dataset,
        result_file_name,
        verbose=False,
        api_nproc=4):

    dataset_name = dataset.dataset_name
    rank, world_size = get_rank_and_world_size()
    result_file = osp.join(work_dir, result_file_name)
    # Dump Predictions to Prev File if result file exists
    if osp.exists(result_file):
        return model

    tmpl = osp.join(work_dir, '{}' + f'{world_size}_{osp.splitext(result_file_name)[0]}.pkl')
    out_file = tmpl.format(rank)

    model = infer_data(
        model=model,
        model_name=model_name,
        work_dir=work_dir,
        dataset=dataset,
        out_file=out_file,
        verbose=verbose,
        api_nproc=api_nproc)

    if world_size > 1:
        dist.barrier()

    if rank == 0:
        data_all = {}
        for i in range(world_size):
            data_all.update(load(tmpl.format(i)))

        meta = dataset.data
        if dataset_name == 'MMBench-Video' and getattr(dataset, 'pack', False):
            meta, vstats = dataset.load_pack_answers(data_all)
            print(f'Statitics of Pack Video Inference: {vstats}')
        else:
            for x in meta['index']:
                assert x in data_all
            meta['prediction'] = [str(data_all[x]) for x in meta['index']]
            if 'image' in meta:
                meta.pop('image')

        dump(meta, result_file)
        for i in range(world_size):
            os.remove(tmpl.format(i))
    return model