tablevqabench.py 15 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
"""
Copied from https://github.com/allenai/allennlp-semparse
Modified from https://github.com/naver-ai/tablevqabench
"""

import re
import unicodedata
import time

from abc import ABCMeta, abstractmethod
from math import isinf, isnan


# Vision Prompts
VWTQ_PROMPT = (
    'You are asked to answer questions asked on an image.\n'
    'You should answer the question with a single word.\n'
    'Example: \n'
    'Question: what was the only year mr. wu competed in the olympic games?\n'
    'Answer: 2004\n'
    'Question: which township in pope county, arkansas has the least amount of water area?\n'
    'Answer: Freeman\n'
    'If you have multiple answers, please separate them with || marks. Example: Apple||Banana||Tomato\n\n'
    'Question: {question}\n'
    'Answer:'
)

VTABFACT_PROMPT = (
    'You are asked to answer whether the statement is True or False based on given image\n'
    'You should only answer True or False.\n'
    'Example: \n'
    'Statement: the milwaukee buck win 6 game in the 2010 - 11 season\n'
    'Answer: True\n'
    'Statement: only the top team score above the average of 8.8\n'
    'Answer: False\n\n'
    'Statement: {question}\n'
    'Answer:'
)

FINTABNETQA_PROMPT = (
    'You are asked to answer questions asked on a image.\n'
    'You should answer the question within a single word or few words.\n'
    'If units can be known, the answer should include units such as $, %, million and etc.\n'
    'Example: \n'
    'Question: What were the total financing originations for the fiscal year ended October 31, 2004?\n'
    'Answer: $3,852 million\n'
    'Question: What is the time period represented in the table?\n'
    'Answer: October 31\n'
    'Question: What was the percentage of net sales for selling, general and administrative expenses in 2006?\n'
    'Answer: 34.2%\n'
    'Question: {question}\n'
    'Answer:'
)


def evaluate_tabfact(data, score_keys):
    num_examples = 0
    num_correct = 0
    manual_check = 0
    start_time = time.time()
    for instance in data:
        if instance['prediction'] is None:
            instance['prediction'] = 'none'
        pred = instance['prediction'].lower()
        gt = instance['answer']
        num_examples += 1
        if 'true' in pred and 'false' in pred:
            manual_check += 1
            score = None
        elif 'true' in pred and gt == '1':
            num_correct += 1
            score = 1
        elif 'false' in pred and gt == '0':
            num_correct += 1
            score = 1
        else:
            score = 0
        instance['scores'] = {score_keys[0]: score}
    if manual_check > 0:
        print(f'the number of not properly parsed samples: {manual_check}')
    end_time = time.time()
    elapsed_time = end_time - start_time
    Accuracy = round((num_correct + 1e-9) / (num_examples + 1e-9), 8) * 100
    meta = {
        'evaluators': 'correctness',
        'score_info': [score_keys[0]],
        'evaluated_time': elapsed_time,
        'total_num_sample': len(data),
        'average_scores': [Accuracy],
    }
    return meta


def evaluate_wtq(data, score_keys):
    num_examples = 0
    num_correct = 0
    start_time = time.time()

    for instance in data:
        pred = instance['prediction'].replace('||', '|')
        gt = instance['answer']
        original_strings = tsv_unescape_list(gt)
        target_values = to_value_list(original_strings)

        predicted_strings = tsv_unescape_list(pred)
        predicted_values = to_value_list(predicted_strings)
        correct = check_denotation(target_values, predicted_values)
        num_examples += 1
        score = 0
        if correct:
            num_correct += 1
            score = 1
        instance['scores'] = {score_keys[0]: score}

    end_time = time.time()
    elapsed_time = end_time - start_time

    Accuracy = round((num_correct + 1e-9) / (num_examples + 1e-9), 8) * 100
    meta = {
        'evaluators': 'correctness',
        'score_info': [score_keys[0]],
        'evaluated_time': elapsed_time,
        'total_num_sample': len(data),
        'average_scores': [Accuracy],
    }
    return meta


def evaluate_fintabnet(data, score_keys):
    num_examples = 0
    num_correct, _num_correct = 0, 0
    start_time = time.time()
    for instance in data:
        pred, preds = fintabnet_normalize(instance['prediction'])
        gt, gts = fintabnet_normalize(instance['answer'])
        correct = 1 if gt == pred else 0
        _correct = any(_pred == _gt for _pred in preds for _gt in gts)
        num_examples += 1
        score, _score = 0, 0
        if correct:
            num_correct += 1
            score = 1
        if _correct:
            _num_correct += 1
            _score = 1
        instance['scores'] = {score_keys[0]: _score, 'exact_score': score}

    end_time = time.time()
    elapsed_time = end_time - start_time
    Accuracy = round((num_correct + 1e-9) / (num_examples + 1e-9), 8) * 100
    _Accuracy = round((_num_correct + 1e-9) / (num_examples + 1e-9), 8) * 100
    meta = {
        'evaluators': 'correctness',
        'score_info': ['relieved_accuracy', score_keys[0]],
        'evaluated_time': elapsed_time,
        'total_num_sample': len(data),
        'average_scores': [_Accuracy, Accuracy],
    }
    return meta


def fintabnet_normalize(s):
    s = normalize(s)
    remove_words = [
        'dollar', 'gallons', 'square feet', 'shares', 'mbtu',
        'mbpd', 'mbbls', 'mmbtu', 'unit', 'gwh', 'year', 'mmcf', 'mile', 'mboe'
    ]

    # Data specific filtering using regular expressions
    # Remove special characters like $, (, and )
    s = re.sub(r'[\$\(\),]', '', s)

    # Replace "dollar" with empty string if it's not part of another word
    pattern = r'\b(' + '|'.join(remove_words) + r')s?\b'
    s = re.sub(pattern, '', s, flags=re.IGNORECASE)

    # Unit conversion dictionary with regex patterns for flexibility
    unit_conversion = {
        r' \bthousand\b': 'e3',
        r' \bmillion\b': 'e6',
        r' \bbillion\b': 'e9',
        r'\bthousand\b': 'e3',
        r'\bmillion\b': 'e6',
        r'\bbillion\b': 'e9',
        r' ?%': 'e-2',
    }

    # Convert percentages to their decimal representation.
    # Applying this after unit_conversion prevents "percent" from being processed
    # in cases like "million %", which would be incorrect.
    # s = re.sub(r' ?%', 'e-2', s)
    # s_percent = re.sub(r' ?%', '', s_percent)

    s_unit_free = s

    # Iterate over unit_conversion and apply transformations
    for pattern, value in unit_conversion.items():
        s = re.sub(pattern, value, s)
        s_unit_free = re.sub(pattern, '', s_unit_free)

    # Attempt to convert to float
    try:
        return float(s), [float(s), float(s_unit_free)]
    except ValueError:
        # Return the original string and the error for debugging purposes
        return s, [s, s_unit_free]


def normalize(x):
    if not isinstance(x, str):
        x = x.decode('utf8', errors='ignore')
    # Remove diacritics
    x = ''.join(
        c for c in unicodedata.normalize('NFKD', x) if unicodedata.category(c) != 'Mn'
    )
    # Normalize quotes and dashes
    x = re.sub(r'[‘’´`]', "'", x)
    x = re.sub(r'[“”]', '"', x)
    x = re.sub(r'[‐‑‒–—−]', '-', x)
    while True:
        old_x = x
        # Remove citations
        x = re.sub(r'((?<!^)\[[^\]]*\]|\[\d+\]|[•♦†‡*#+])*$', '', x.strip())
        # Remove details in parenthesis
        x = re.sub(r'(?<!^)( \([^)]*\))*$', '', x.strip())
        # Remove outermost quotation mark
        x = re.sub(r'^"([^"]*)"$', r'\1', x.strip())
        if x == old_x:
            break
    # Remove final '.'
    if x and x[-1] == '.':
        x = x[:-1]
    # Collapse whitespaces and convert to lower case
    x = re.sub(r'\s+', ' ', x, flags=re.U).lower().strip()
    return x


# Value Types
class Value(object):
    __metaclass__ = ABCMeta

    # Should be populated with the normalized string
    _normalized = None

    @abstractmethod
    def match(self, other):
        """Return True if the value matches the other value.

        Args:
            other (Value)
        Returns:
            a boolean
        """
        pass

    @property
    def normalized(self):
        return self._normalized


class StringValue(Value):
    def __init__(self, content):
        assert isinstance(content, str)
        self._normalized = normalize(content)
        self._hash = hash(self._normalized)

    def __eq__(self, other):
        return isinstance(other, StringValue) and self.normalized == other.normalized

    def __hash__(self):
        return self._hash

    def __str__(self):
        return 'S' + str([self.normalized])

    def __repr__(self):
        return self.__str__()

    def match(self, other):
        assert isinstance(other, Value)
        return self.normalized == other.normalized


class NumberValue(Value):
    def __init__(self, amount, original_string=None):
        assert isinstance(amount, (int, float))
        if abs(amount - round(amount)) < 1e-6:
            self._amount = int(amount)
        else:
            self._amount = float(amount)
        if not original_string:
            self._normalized = str(self._amount)
        else:
            self._normalized = normalize(original_string)
        self._hash = hash(self._amount)

    @property
    def amount(self):
        return self._amount

    def __eq__(self, other):
        return isinstance(other, NumberValue) and self.amount == other.amount

    def __hash__(self):
        return self._hash

    def __str__(self):
        return 'N({})'.format(self.amount) + str([self.normalized])

    def __repr__(self):
        return self.__str__()

    def match(self, other):
        assert isinstance(other, Value)
        if self.normalized == other.normalized:
            return True
        if isinstance(other, NumberValue):
            return abs(self.amount - other.amount) < 1e-6
        return False

    @staticmethod
    def parse(text):
        """Try to parse into a number.

        Return:
            the number (int or float) if successful; otherwise None.
        """
        try:
            return int(text)
        except ValueError:
            try:
                amount = float(text)
                assert not isnan(amount) and not isinf(amount)
                return amount
            except ValueError:
                return None


class DateValue(Value):
    def __init__(self, year, month, day, original_string=None):
        """Create a new DateValue. Placeholders are marked as -1."""
        assert isinstance(year, int)
        assert isinstance(month, int) and (month == -1 or 1 <= month <= 12)
        assert isinstance(day, int) and (day == -1 or 1 <= day <= 31)
        assert not (year == month == day == -1)
        self._year = year
        self._month = month
        self._day = day
        if not original_string:
            self._normalized = '{}-{}-{}'.format(
                year if year != -1 else 'xx',
                month if month != -1 else 'xx',
                day if day != '-1' else 'xx',
            )
        else:
            self._normalized = normalize(original_string)
        self._hash = hash((self._year, self._month, self._day))

    @property
    def ymd(self):
        return (self._year, self._month, self._day)

    def __eq__(self, other):
        return isinstance(other, DateValue) and self.ymd == other.ymd

    def __hash__(self):
        return self._hash

    def __str__(self):
        return ('D(%d,%d,%d)' % (self._year, self._month, self._day)) + str(
            [self._normalized]
        )

    __repr__ = __str__

    def match(self, other):
        assert isinstance(other, Value)
        if self.normalized == other.normalized:
            return True
        if isinstance(other, DateValue):
            return self.ymd == other.ymd
        return False

    @staticmethod
    def parse(text):
        """Try to parse into a date.

        Return:
            tuple (year, month, date) if successful; otherwise None.
        """
        try:
            ymd = text.lower().split('-')
            assert len(ymd) == 3
            year = -1 if ymd[0] in ('xx', 'xxxx') else int(ymd[0])
            month = -1 if ymd[1] == 'xx' else int(ymd[1])
            day = -1 if ymd[2] == 'xx' else int(ymd[2])
            assert not (year == month == day == -1)
            assert month == -1 or 1 <= month <= 12
            assert day == -1 or 1 <= day <= 31
            return (year, month, day)
        except:
            return None


# Value Instantiation
def to_value(original_string, corenlp_value=None):
    """Convert the string to Value object.

    Args:
        original_string (basestring): Original string
        corenlp_value (basestring): Optional value returned from CoreNLP
    Returns:
        Value
    """
    if isinstance(original_string, Value):
        # Already a Value
        return original_string
    if not corenlp_value:
        corenlp_value = original_string
    # Number?
    amount = NumberValue.parse(corenlp_value)
    if amount is not None:
        return NumberValue(amount, original_string)
    # Date?
    ymd = DateValue.parse(corenlp_value)
    if ymd is not None:
        if ymd[1] == ymd[2] == -1:
            return NumberValue(ymd[0], original_string)
        else:
            return DateValue(ymd[0], ymd[1], ymd[2], original_string)
    # String.
    return StringValue(original_string)


def to_value_list(original_strings, corenlp_values=None):
    """Convert a list of strings to a list of Values

    Args:
        original_strings (list[basestring])
        corenlp_values (list[basestring or None])
    Returns:
        list[Value]
    """
    assert isinstance(original_strings, (list, tuple, set))
    if corenlp_values is not None:
        assert isinstance(corenlp_values, (list, tuple, set))
        assert len(original_strings) == len(corenlp_values)
        return list(
            set(to_value(x, y) for (x, y) in zip(original_strings, corenlp_values))
        )
    else:
        return list(set(to_value(x) for x in original_strings))


# Check the Predicted Denotations
def check_denotation(target_values, predicted_values):
    """Return True if the predicted denotation is correct.

    Args:
        target_values (list[Value])
        predicted_values (list[Value])
    Returns:
        bool
    """
    # Check size
    if len(target_values) != len(predicted_values):
        return False
    # Check items
    for target in target_values:
        if not any(target.match(pred) for pred in predicted_values):
            return False
    return True


# Batch Mode
def tsv_unescape(x):
    """Unescape strings in the TSV file.
    Escaped characters include:
        newline (0x10) -> backslash + n
        vertical bar (0x7C) -> backslash + p
        backslash (0x5C) -> backslash + backslash

    Args:
        x (str or unicode)
    Returns:
        a unicode
    """
    return x.replace(r'\n', '\n').replace(r'\p', '|').replace('\\\\', '\\')


def tsv_unescape_list(x):
    """Unescape a list in the TSV file.
    List items are joined with vertical bars (0x5C)

    Args:
        x (str or unicode)
    Returns:
        a list of unicodes
    """
    return [tsv_unescape(y) for y in x.split('|')]