longvideobench.py 12.5 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
from huggingface_hub import snapshot_download
from ..smp import *
from .video_base import VideoBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from glob import glob

FAIL_MSG = 'Failed to obtain answer via API.'


def timestamp_to_seconds(timestamp):
    # Split the timestamp into hours, minutes, and seconds
    h, m, s = timestamp.split(":")
    # Convert hours, minutes, and total seconds (including fractions) to float and compute total seconds
    total_seconds = int(h) * 3600 + int(m) * 60 + float(s)
    return total_seconds


def uniformly_subsample(lst, K):
    n = len(lst)
    if K >= n:
        return lst
    step = n / K
    return [lst[int(i * step)] for i in range(K)]


def insert_subtitles_into_frames(
    frames,
    frame_timestamps,
    subtitles,
    starting_timestamp_for_subtitles,
    duration,
):
    interleaved_list = []
    cur_i = 0

    for subtitle in subtitles:
        if "timestamp" in subtitle:
            start, end = subtitle["timestamp"]

            if not isinstance(end, float):
                end = duration

            start -= starting_timestamp_for_subtitles
            end -= starting_timestamp_for_subtitles

            subtitle_timestamp = (start + end) / 2
            subtitle_text = subtitle["text"]
        else:
            start, end = subtitle["start"], subtitle["end"]
            start = timestamp_to_seconds(start)
            end = timestamp_to_seconds(end)
            start -= starting_timestamp_for_subtitles
            end -= starting_timestamp_for_subtitles

            subtitle_timestamp = (start + end) / 2
            subtitle_text = subtitle["line"]

        for i, (frame, frame_timestamp) in enumerate(
            zip(frames[cur_i:], frame_timestamps[cur_i:])
        ):
            if frame_timestamp <= subtitle_timestamp:
                # print("frame:", frame_timestamp)
                interleaved_list.append({"type": "image", "value": frame})
                cur_i += 1
            else:
                break

        if end - start < 1:
            end = subtitle_timestamp + 0.5
            start = subtitle_timestamp - 0.5

        covering_frames = False
        for frame, frame_timestamp in zip(frames, frame_timestamps):
            if frame_timestamp < end and frame_timestamp > start:
                covering_frames = True
                break

        if covering_frames:
            interleaved_list.append({"type": "text", "value": subtitle_text + "\n"})
        else:
            pass

    for i, (frame, frame_timestamp) in enumerate(
        zip(frames[cur_i:], frame_timestamps[cur_i:])
    ):
        interleaved_list.append({"type": "image", "value": frame})
    return interleaved_list


class LongVideoBench(VideoBaseDataset):

    MD5 = '82905eae3a5ae7383c5a8ee9655e1ab9'
    SYS = ''

    TYPE = 'Video-MCQ'

    def __init__(self, dataset='LongVideoBench', use_subtitle=False, nframe=0, fps=-1):
        super().__init__(dataset=dataset, nframe=nframe, fps=fps)
        self.use_subtitle = use_subtitle
        self.dataset_name = dataset

    @classmethod
    def supported_datasets(cls):
        return ['LongVideoBench']

    def prepare_dataset(self, dataset_name='LongVideoBench', repo_id='longvideobench/LongVideoBench'):

        def check_integrity(pth):
            data_file = osp.join(pth, f'{dataset_name}.tsv')

            if not osp.exists(data_file):
                return False

            if md5(data_file) != self.MD5:
                print("md5 mismatch", md5(data_file), self.MD5)
                return False
            data = load(data_file)
            for video_pth in data['video_path']:
                if not osp.exists(osp.join(pth, video_pth)):
                    print(video_pth, "is not found")
                    return False
            return True

        if modelscope_flag_set():
            repo_id = "AI-ModelScope/LongVideoBench"

        cache_path = get_cache_path(repo_id)
        if cache_path is not None and check_integrity(cache_path):
            dataset_path = cache_path
        else:
            def generate_tsv(pth):
                data_file = osp.join(pth, f'{dataset_name}.tsv')
                if osp.exists(data_file) and md5(data_file) == self.MD5:
                    return

                data_file = pd.read_json(osp.join(pth, 'lvb_val.json'))
                data_file = data_file.assign(index=range(len(data_file)))
                data_file['video'] = data_file['video_id']
                data_file['video_path'] = data_file['video_path'].apply(lambda x: f'./videos/{x}')

                data_file.to_csv(osp.join(pth, f'{dataset_name}.tsv'), sep='\t', index=False)

            if modelscope_flag_set():
                from modelscope import dataset_snapshot_download
                dataset_snapshot_download(dataset_id=repo_id)
            else:
                snapshot_download(repo_id=repo_id, repo_type='dataset')
            print("All videos are downloaded for LongVideoBench")

            if not glob(osp.join(cache_path, "videos")):
                tar_files = glob(osp.join(cache_path, "**/*.tar*"), recursive=True)

                def untar_video_data(tar_file, cache_dir):
                    import tarfile
                    with tarfile.open(tar_file, "r") as tar_ref:
                        tar_ref.extractall(cache_dir)
                        print(f"Extracted all files from {tar_file} to {cache_dir}")

                def concat_tar_parts(tar_parts, output_tar):
                    with open(output_tar, "wb") as out_tar:
                        from tqdm import tqdm
                        for part in tqdm(sorted(tar_parts)):
                            with open(part, "rb") as part_file:
                                out_tar.write(part_file.read())
                    print(f"Concatenated parts {tar_parts} into {output_tar}")

                tar_parts_dict = {}

                # Group tar parts together
                for tar_file in tar_files:
                    base_name = tar_file.split(".tar")[0]
                    if base_name not in tar_parts_dict:
                        tar_parts_dict[base_name] = []
                    tar_parts_dict[base_name].append(tar_file)

                # Concatenate and untar split parts
                for base_name, parts in tar_parts_dict.items():
                    print(f"Extracting following tar files: {parts}")
                    output_tar = base_name + ".tar"
                    if not osp.exists(output_tar):
                        print('Start concatenating tar files')

                        concat_tar_parts(parts, output_tar)
                        print('Finish concatenating tar files')

                    if not osp.exists(osp.join(cache_path, osp.basename(base_name))):
                        untar_video_data(output_tar, cache_path)

            print('All videos are extracted for LongVideoBench')

            dataset_path = cache_path
            generate_tsv(dataset_path)

        data_file = osp.join(dataset_path, f'{dataset_name}.tsv')

        return dict(data_file=data_file, root=dataset_path)

    def save_video_frames(self, video_path, video_llm=False):

        vid_path = osp.join(self.data_root, video_path)
        vid = decord.VideoReader(vid_path)
        video_info = {
            'fps': vid.get_avg_fps(),
            'n_frames': len(vid),
        }
        if self.nframe > 0 and self.fps < 0:
            step_size = len(vid) / (self.nframe + 1)
            indices = [int(i * step_size) for i in range(1, self.nframe + 1)]
            frame_paths = self.frame_paths(video_path[:-4])
        elif self.fps > 0:
            # not constrained by num_frames, get frames by fps
            total_duration = video_info['n_frames'] / video_info['fps']
            required_frames = int(total_duration * self.fps)
            step_size = video_info['fps'] / self.fps
            indices = [int(i * step_size) for i in range(required_frames)]
            frame_paths = self.frame_paths_fps(video_path[:-4], len(indices))

        flag = np.all([osp.exists(p) for p in frame_paths])

        if not flag:
            images = [vid[i].asnumpy() for i in indices]
            images = [Image.fromarray(arr) for arr in images]
            for im, pth in zip(images, frame_paths):
                if not osp.exists(pth) and not video_llm:
                    im.save(pth)

        return frame_paths, indices, video_info

    # def save_video_into_images(self, line, num_frames=8):
    #     frame_paths, indices, video_info = self.save_video_frames(line['video_path'], num_frames)
    #     return frame_paths

    def build_prompt(self, line, video_llm):
        if isinstance(line, int):
            assert line < len(self)
            line = self.data.iloc[line]

        frames, indices, video_info = self.save_video_frames(line['video_path'], video_llm)
        fps = video_info["fps"]

        message = [dict(type='text', value=self.SYS)]
        if video_llm:
            message.append(dict(type='video', value=osp.join(self.data_root, line['video_path'])))
        else:
            if not self.use_subtitle:
                with open(osp.join(self.data_root, "subtitles", line["subtitle_path"])) as f:
                    subtitles = json.load(f)

                frame_message = insert_subtitles_into_frames(
                    frames,
                    [ind_ / fps for ind_ in indices],
                    subtitles,
                    line["starting_timestamp_for_subtitles"],
                    line["duration"]
                )

                message += frame_message
            else:
                for im in frames:
                    message.append(dict(type='image', value=im))

        line['question'] += '\n' + '\n'.join(
            ["{}. {}".format(chr(ord("A") + i), cand) for i, cand in enumerate(eval(line['candidates']))]
        )
        prompt = line["question"] + "\nAnswer with the option's letter from the given choices directly."
        message.append(dict(type='text', value=prompt))
        return message

    # It returns a dictionary
    @classmethod
    def evaluate(self, eval_file, **judge_kwargs):
        from .utils.longvideobench import get_dimension_rating, extract_characters_regex, extract_option

        assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'

        tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
        tgt_file = eval_file.replace('.xlsx', '_rating.json')
        score_file = eval_file.replace('.xlsx', '_score.xlsx')

        if not osp.exists(score_file):
            model = judge_kwargs.get('model', 'exact_matching')
            assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']

            if model == 'exact_matching':
                model = None
            elif gpt_key_set():
                model = build_judge(**judge_kwargs)
                if not model.working():
                    warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
                    warnings.warn(DEBUG_MESSAGE)
                    model = None
            else:
                warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
                model = None
            res = {} if not osp.exists(tmp_file) else load(tmp_file)
            res = {k: v for k, v in res.items() if FAIL_MSG not in v}

            data = load(eval_file)
            data_un = data[~pd.isna(data['prediction'])]

            for idx in data['index']:
                ans = data.loc[data['index'] == idx, 'correct_choice'].values[0]
                ans = chr(ord("A") + ans)
                pred = str(data.loc[data['index'] == idx, 'prediction'].values[0])

                if extract_characters_regex(pred) == '':
                    extract_pred = extract_option(
                        model,
                        data.loc[data['index'] == idx].to_dict(orient='records')[0],
                        'LongVideoBench'
                    )
                    data.loc[idx, 'score'] = int(extract_pred == ans)
                else:
                    data.loc[idx, 'score'] = int(extract_characters_regex(pred) == ans)

            rejected = [x for x in data['score'] if x == -1]

            print(
                f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
                f'failed to obtain the score for another {len(rejected)} questions. '
                f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.'
            )

            dump(data, score_file)

        rating = get_dimension_rating(score_file)
        dump(rating, tgt_file)
        return rating