"research/fivo/bounds.py" did not exist on "6e4bbb74beb771aa6767de867a72a3f32593f474"
dynamath.py 9.04 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import re
import json
import sympy as sp
import numpy as np
import pandas as pd
from sympy import simplify, Eq, sympify, Pow, pi
from sympy.parsing.latex import parse_latex
import sys
import math
import os
import os.path as osp
import argparse

from .image_base import ImageBaseDataset
from .utils import build_judge
from ..utils import track_progress_rich
from ..smp import load, dump, d2df, toliststr


def preprocess(str1):
    if 0 <= str1.find("{") < str1.rfind("}"):
        str1 = str1[str1.find("{"): str1.rfind("}") + 1]
    str2 = str1.replace("\\", "")
    str2 = str2.replace("\\n", "\n")
    return str2


def transfer(str1):
    if "\u03c0" in str1:
        strs = str1.split('\u03c0')
        str1 = strs[0]
        return float(str1) * np.pi
    else:
        return float(str1)


def parse_answer(answer, answer_type="multiple choice"):
    if answer_type == "float":
        if answer.isdigit():
            return True, float(answer)
        else:
            parts = answer.split(' ')
            answer = parts[0]
            try:
                answer = transfer(answer)
                return True, answer
            except:
                return False, None
    elif answer_type == "multiple choice":
        if len(answer) == 1:
            return True, answer.upper()
        else:
            in_flag = [ch in answer.upper() for ch in 'ABCDE']
            if sum(in_flag) == 1:
                for ch in 'ABCDE':
                    if ch in answer.upper():
                        return True, ch
            return False, None
    else:
        return True, answer


def DynaMath_auxeval(model, line):
    pred = line['prediction']
    pred = preprocess(pred)

    succeed, short_answer = None, None
    try:
        dj = json.loads(pred, strict=False)
        short_answer = dj.get("short answer")
        assert short_answer is not None
        succeed, short_answer = parse_answer(short_answer, answer_type=line['anwser_type'])
        assert succeed
    except:
        # Failed to parse the JSON, use an auxiliary LLM to get the short answer
        if line['answer_type'] == 'multiple choice':
            inst = "Output the corresponing choice option, such as 'A', 'B', 'C', 'D', in a single line."
        elif line['answer_type'] == 'float':
            inst = "Output a three-digit floating-point number in a single line."
        else:
            inst = (
                "Output a short answer in a single line. Any float numbers in the answer "
                "should be formatted as three-digit floating-point numbers."
            )

        prompt = f"Free-form answer: {pred}\nInstruction: {inst}"
        response = pred
        succeed, short_answer = parse_answer(response, line['answer_type'])
        if not succeed:
            response = model.generate(prompt)
            succeed, short_answer = parse_answer(response, line['answer_type'])

    if line['answer_type'] == 'float':
        if succeed:
            diff = float(short_answer) - float(line['answer'])
            if abs(diff) <= 0.001:
                return dict(parse=True, extracted=short_answer, correct=True)
            else:
                return dict(parse=True, extracted=short_answer, correct=False)
        else:
            return dict(parse=False, extracted=None, correct=False)
    elif line['answer_type'] == 'multiple choice':
        if succeed:
            return dict(parse=True, extracted=short_answer, correct=(short_answer == line['answer']))
        else:
            if line['answer'] in pred[:3].upper():
                return dict(parse=False, extracted=None, correct=True)
            else:
                return dict(parse=False, extracted=None, correct=False)
    else:
        if succeed:
            return dict(parse=True, extracted=short_answer, correct=(short_answer.lower() in line['answer'].lower()))
        else:
            return dict(parse=False, extracted=None, correct=(short_answer.lower() in line['answer'].lower()))


class Dynamath(ImageBaseDataset):

    TYPE = 'VQA'
    DATASET_URL = {'DynaMath': 'https://opencompass.openxlab.space/utils/VLMEval/DynaMath.tsv'}
    DATASET_MD5 = {'DynaMath': 'b8425ad9a7114571fc9366e013699494'}
    GUIDE = """
## Answer Instruction Please provide an answer to the question outlined above. Your response should adhere \
to the following JSON format, which includes two keys: 'solution' and 'short answer'. The 'solution' key can contain \
detailed steps needed to solve the question, and the 'short answer' key should provide a concise response. {INST}

Example of expected JSON response format:

"""
    EXAMPLE = {
        "solution": "[Detailed step-by-step explanation]",
        "short answer": "[Concise Answer]"
    }
    TEXT_EXAMPLE = json.dumps(EXAMPLE, indent=4)

    # Given one data record, return the built prompt (a multi-modal message), can override
    def build_prompt(self, line):
        if isinstance(line, int):
            line = self.data.iloc[line]

        if self.meta_only:
            tgt_path = toliststr(line['image_path'])
        else:
            tgt_path = self.dump_image(line)

        prompt = f"## Question\n {line['question']}"
        if line['answer_type'] == 'multiple choice':
            inst = "Provide the corresponing choice option in the 'short answer' key, such as 'A', 'B', 'C', or 'D'."
        elif line['answer_type'] == 'float':
            inst = "Format the answer as a three-digit floating-point number and provide it in the 'short answer' key."
        else:
            inst = "Float numbers in the answer should be formatted as three-digit floating-point numbers."

        prompt = prompt + self.GUIDE.format(INST=inst) + self.TEXT_EXAMPLE

        msgs = []
        if isinstance(tgt_path, list):
            msgs.extend([dict(type='image', value=p) for p in tgt_path])
        else:
            msgs = [dict(type='image', value=tgt_path)]
        msgs.append(dict(type='text', value=prompt))
        return msgs

    def evaluate(self, eval_file, **judge_kwargs):
        judge_name = judge_kwargs.pop('model', 'gpt-4o-mini')

        model = build_judge(model=judge_name, **judge_kwargs)
        suffix = eval_file.split('.')[-1]

        storage = eval_file.replace(f'.{suffix}', f'_{judge_name}.xlsx')  # noqa: F841
        score_file = eval_file.replace(f'.{suffix}', f'_{judge_name}_score.csv')  # noqa: F841
        tmp_file = eval_file.replace(f'.{suffix}', f'_{judge_name}.pkl')  # noqa: F841
        nproc = judge_kwargs.pop('nproc', 6)  # noqa: F841

        res = load(tmp_file) if os.path.exists(tmp_file) else {}
        res = {k: v for k, v in res.items() if v is not None}

        model.system_prompt = """\
You are a helpful assistant that helps me to format free-form answers into a short answer according to the instruction.
"""
        if not osp.exists(storage):
            data = load(eval_file)
            lt = len(data)
            payloads = [dict(model=model, line=data.iloc[i]) for i in range(lt) if data.iloc[i]['index'] not in res]
            keys = [idx for idx in data['index'] if idx not in res]

            if len(keys):
                results = track_progress_rich(DynaMath_auxeval, payloads, nproc=nproc, save=tmp_file, keys=keys)
                for k, r in zip(keys, results):
                    res[k] = r

            data['parse'] = [res[idx]['parse'] for idx in data['index']]
            data['extracted'] = [res[idx]['extracted'] for idx in data['index']]
            data['correct'] = [res[idx]['correct'] for idx in data['index']]
            dump(data, storage)

        data = load(storage)
        # Calculate Average Accuracy
        score_avg = {}
        score_avg['Overall'] = np.mean(data['correct'])

        subs = set(data['subject'])
        for sub in subs:
            data_sub = data[data['subject'] == sub]
            score_avg[f'Subject-{sub}'] = np.mean(data_sub['correct'])

        lvls = set(data['knowledge_level'])
        for lvl in lvls:
            data_lvl = data[data['knowledge_level'] == lvl]
            score_avg[f'Level-{lvl}'] = np.mean(data_lvl['correct'])

        # Calculate the Worst Case Accuracy
        score_worst = {}
        data_worst = data[data['varid'] == 1]
        qid2corr = {idx: True for idx in data_worst['index']}
        lt = len(data)
        for i in range(lt):
            item = data.iloc[i]
            qid2corr[item['qid']] *= item['correct']
        data_worst['correct'] = [qid2corr[idx] for idx in data_worst['qid']]
        score_worst['Overall'] = np.mean(data_worst['correct'])

        subs = set(data_worst['subject'])
        for sub in subs:
            data_sub = data_worst[data_worst['subject'] == sub]
            score_worst[f'Subject-{sub}'] = np.mean(data_sub['correct'])

        lvls = set(data_worst['knowledge_level'])
        for lvl in lvls:
            data_lvl = data_worst[data_worst['knowledge_level'] == lvl]
            score_worst[f'Level-{lvl}'] = np.mean(data_lvl['correct'])

        d1 = {'Setting': 'Average'}
        d1.update(score_avg)
        d2 = {'Setting': 'Worst Case'}
        d2.update(score_worst)
        score = pd.concat([d2df(d1), d2df(d2)], ignore_index=True)

        dump(score, score_file)
        return score