train.py 5.9 KB
Newer Older
dongchy920's avatar
dongchy920 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import copy
import logging
from dataclasses import dataclass, field
from typing import Dict, Optional, Sequence
import argparse
import torch
import transformers
import utils
from torch.utils.data import Dataset
from transformers import Trainer
import torch.distributed as dist
import sys
import os
import numpy as np
from utils import utils
from utils import training_datasets
IGNORE_INDEX = -100 #default ignore_index = 100 in transformers
logging.basicConfig(level=logging.DEBUG)  
@dataclass
class ModelArguments:
    model_name_or_path: Optional[str] = field(default="facebook/opt-125m")


@dataclass
class DataArguments:
    data_path: str = field(default=None, metadata={"help": "Path to the training data."})


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: Optional[str] = field(default=None)
    optim: str = field(default="adamw_torch")
    model_max_length: int = field(
        default=512,
        metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
    )
    truncate_source: bool = field(default=False)


def smart_tokenizer_and_embedding_resize(
    special_tokens_dict: Dict,
    tokenizer: transformers.PreTrainedTokenizer,
    model: transformers.PreTrainedModel,
):
    """Resize tokenizer and embedding.

    Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
    """
    num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
    model.resize_token_embeddings(len(tokenizer))

    if num_new_tokens > 0:
        input_embeddings = model.get_input_embeddings().weight.data
        output_embeddings = model.get_output_embeddings().weight.data

        input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
        output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)

        input_embeddings[-num_new_tokens:] = input_embeddings_avg
        output_embeddings[-num_new_tokens:] = output_embeddings_avg


def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
    """Tokenize a list of strings."""
    tokenized_list = [
        tokenizer(
            text,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        )
        for text in strings
    ]
    input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
    input_ids_lens = labels_lens = [
        tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
    ]
    return dict(
        input_ids=input_ids,
        labels=labels,
        input_ids_lens=input_ids_lens,
        labels_lens=labels_lens,
    )



@dataclass
class DataCollatorForSupervisedDataset(object):
    """Collate examples for supervised fine-tuning."""

    tokenizer: transformers.PreTrainedTokenizer

    def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
        input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
        input_ids = torch.nn.utils.rnn.pad_sequence(
            input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
        )
        labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
        return dict(
            input_ids=input_ids,
            labels=labels,
            attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
        )


def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, args) -> Dict:
    """Make dataset and collator for supervised fine-tuning."""
    if args.data_path.endswith(".npy") or args.data_path.endswith(".jsonl"):
        train_dataset = training_datasets.SupervisedDataset(tokenizer=tokenizer, data_path=args.data_path, args=args)
    elif args.data_path.endswith(".mmap"):
        train_dataset = training_datasets.MMAPSupervisedDataset(tokenizer=tokenizer, data_path=args.data_path, args=args)
    data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
    return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)


def is_master():
    return dist.get_rank() == 0


class LoggingCallback(transformers.TrainerCallback):
    def on_log(self, args, state, control, logs=None, **kwargs):
        if logs is not None:
            log_message = {
                "loss": logs.get("loss", None),
                "learning_rate": logs.get("learning_rate", None),
                "epoch": logs.get("epoch", None),
                "step": state.global_step
            }
            if is_master():
                print(log_message)


def train():
    parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    args = {**model_args.__dict__, **data_args.__dict__, **training_args.__dict__}
    args = argparse.Namespace(**args)
    #logging.info(args)
    model = transformers.AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
    )
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        model_args.model_name_or_path,
        pad_token = '<|endoftext|>',
        eos_token = '<|im_end|>', #<|endoftext|>
        cache_dir = None,
        model_max_length = training_args.model_max_length,
        truncation = True,
        padding_side = "right",
        trust_remote_code = True
    )
    tokenizer.add_special_tokens({"additional_special_tokens": ["<|im_end|>", "<|im_start|>"]})
    data_module = make_supervised_data_module(tokenizer=tokenizer, args=args)
    trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module, callbacks=[LoggingCallback])
    trainer.train()
    trainer.save_state()
    trainer.save_model(output_dir=training_args.output_dir)

if __name__ == "__main__":
    train()