process.py 29.4 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
import copy
import numba
import numpy as np
import random
import torch
import pdb
from pointpillars.ops.iou3d_module import boxes_overlap_bev, boxes_iou_bev


def setup_seed(seed=0, deterministic = True):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    if deterministic:
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False


def bbox_camera2lidar(bboxes, tr_velo_to_cam, r0_rect):
    '''
    bboxes: shape=(N, 7)
    tr_velo_to_cam: shape=(4, 4)
    r0_rect: shape=(4, 4)
    return: shape=(N, 7)
    '''
    x_size, y_size, z_size = bboxes[:, 3:4], bboxes[:, 4:5], bboxes[:, 5:6]
    xyz_size = np.concatenate([z_size, x_size, y_size], axis=1)
    extended_xyz = np.pad(bboxes[:, :3], ((0, 0), (0, 1)), 'constant', constant_values=1.0)
    rt_mat = np.linalg.inv(r0_rect @ tr_velo_to_cam)
    xyz = extended_xyz @ rt_mat.T
    bboxes_lidar = np.concatenate([xyz[:, :3], xyz_size, bboxes[:, 6:]], axis=1)
    return np.array(bboxes_lidar, dtype=np.float32)


def bbox_lidar2camera(bboxes, tr_velo_to_cam, r0_rect):
    '''
    bboxes: shape=(N, 7)
    tr_velo_to_cam: shape=(4, 4)
    r0_rect: shape=(4, 4)
    return: shape=(N, 7)
    '''
    x_size, y_size, z_size = bboxes[:, 3:4], bboxes[:, 4:5], bboxes[:, 5:6]
    xyz_size = np.concatenate([y_size, z_size, x_size], axis=1)
    extended_xyz = np.pad(bboxes[:, :3], ((0, 0), (0, 1)), 'constant', constant_values=1.0)
    rt_mat = r0_rect @ tr_velo_to_cam
    xyz = extended_xyz @ rt_mat.T
    bboxes_camera = np.concatenate([xyz[:, :3], xyz_size, bboxes[:, 6:]], axis=1)
    return bboxes_camera


def points_camera2image(points, P2):
    '''
    points: shape=(N, 8, 3) 
    P2: shape=(4, 4)
    return: shape=(N, 8, 2)
    '''
    extended_points = np.pad(points, ((0, 0), (0, 0), (0, 1)), 'constant', constant_values=1.0) # (n, 8, 4)
    image_points = extended_points @ P2.T # (N, 8, 4)
    image_points = image_points[:, :, :2] / image_points[:, :, 2:3]
    return image_points


def points_lidar2image(points, tr_velo_to_cam, r0_rect, P2):
    '''
    points: shape=(N, 8, 3) 
    tr_velo_to_cam: shape=(4, 4)
    r0_rect: shape=(4, 4)
    P2: shape=(4, 4)
    return: shape=(N, 8, 2)
    '''
    # points = points[:, :, [1, 2, 0]]
    extended_points = np.pad(points, ((0, 0), (0, 0), (0, 1)), 'constant', constant_values=1.0) # (N, 8, 4)
    rt_mat = r0_rect @ tr_velo_to_cam
    camera_points = extended_points @ rt_mat.T # (N, 8, 4)
    # camera_points = camera_points[:, :, [1, 2, 0, 3]]
    image_points = camera_points @ P2.T # (N, 8, 4)
    image_points = image_points[:, :, :2] / image_points[:, :, 2:3]

    return image_points


def points_camera2lidar(points, tr_velo_to_cam, r0_rect):
    '''
    points: shape=(N, 8, 3) 
    tr_velo_to_cam: shape=(4, 4)
    r0_rect: shape=(4, 4)
    return: shape=(N, 8, 3)
    '''
    extended_xyz = np.pad(points, ((0, 0), (0, 0), (0, 1)), 'constant', constant_values=1.0)
    rt_mat = np.linalg.inv(r0_rect @ tr_velo_to_cam)
    xyz = extended_xyz @ rt_mat.T
    return xyz[..., :3]


def bbox3d2bevcorners(bboxes):
    '''
    bboxes: shape=(n, 7)

                ^ x (-0.5 * pi)
                |
                |                (bird's eye view)
       (-pi)  o |
        y <-------------- (0)
                 \ / (ag)
                  \ 
                   \ 

    return: shape=(n, 4, 2)
    '''
    centers, dims, angles = bboxes[:, :2], bboxes[:, 3:5], bboxes[:, 6]

    # 1.generate bbox corner coordinates, clockwise from minimal point
    bev_corners = np.array([[-0.5, -0.5], [-0.5, 0.5], [0.5, 0.5], [0.5, -0.5]], dtype=np.float32)
    bev_corners = bev_corners[None, ...] * dims[:, None, :] # (1, 4, 2) * (n, 1, 2) -> (n, 4, 2)

    # 2. rotate
    rot_sin, rot_cos = np.sin(angles), np.cos(angles)
    # in fact, -angle
    rot_mat = np.array([[rot_cos, rot_sin], 
                        [-rot_sin, rot_cos]]) # (2, 2, n)
    rot_mat = np.transpose(rot_mat, (2, 1, 0)) # (N, 2, 2)
    bev_corners = bev_corners @ rot_mat # (n, 4, 2)

    # 3. translate to centers
    bev_corners += centers[:, None, :] 
    return bev_corners.astype(np.float32)


def bbox3d2corners(bboxes):
    '''
    bboxes: shape=(n, 7)
    return: shape=(n, 8, 3)
           ^ z   x            6 ------ 5
           |   /             / |     / |
           |  /             2 -|---- 1 |   
    y      | /              |  |     | | 
    <------|o               | 7 -----| 4
                            |/   o   |/    
                            3 ------ 0 
    x: front, y: left, z: top
    '''
    centers, dims, angles = bboxes[:, :3], bboxes[:, 3:6], bboxes[:, 6]

    # 1.generate bbox corner coordinates, clockwise from minimal point
    bboxes_corners = np.array([[-0.5, -0.5, 0], [-0.5, -0.5, 1.0], [-0.5, 0.5, 1.0], [-0.5, 0.5, 0.0],
                               [0.5, -0.5, 0], [0.5, -0.5, 1.0], [0.5, 0.5, 1.0], [0.5, 0.5, 0.0]], 
                               dtype=np.float32)
    bboxes_corners = bboxes_corners[None, :, :] * dims[:, None, :] # (1, 8, 3) * (n, 1, 3) -> (n, 8, 3)

    # 2. rotate around z axis
    rot_sin, rot_cos = np.sin(angles), np.cos(angles)
    # in fact, -angle
    rot_mat = np.array([[rot_cos, rot_sin, np.zeros_like(rot_cos)],
                        [-rot_sin, rot_cos, np.zeros_like(rot_cos)],
                        [np.zeros_like(rot_cos), np.zeros_like(rot_cos), np.ones_like(rot_cos)]], 
                        dtype=np.float32) # (3, 3, n)
    rot_mat = np.transpose(rot_mat, (2, 1, 0)) # (n, 3, 3)
    bboxes_corners = bboxes_corners @ rot_mat # (n, 8, 3)

    # 3. translate to centers
    bboxes_corners += centers[:, None, :]
    return bboxes_corners


def bbox3d2corners_camera(bboxes):
    '''
    bboxes: shape=(n, 7)
    return: shape=(n, 8, 3)
        z (front)            6 ------ 5
        /                  / |     / |
       /                  2 -|---- 1 |   
      /                   |  |     | | 
    |o ------> x(right)   | 7 -----| 4
    |                     |/   o   |/    
    |                     3 ------ 0 
    |
    v y(down)                   
    '''
    centers, dims, angles = bboxes[:, :3], bboxes[:, 3:6], bboxes[:, 6]

    # 1.generate bbox corner coordinates, clockwise from minimal point
    bboxes_corners = np.array([[0.5, 0.0, -0.5], [0.5, -1.0, -0.5], [-0.5, -1.0, -0.5], [-0.5, 0.0, -0.5],
                               [0.5, 0.0, 0.5], [0.5, -1.0, 0.5], [-0.5, -1.0, 0.5], [-0.5, 0.0, 0.5]], 
                               dtype=np.float32)
    bboxes_corners = bboxes_corners[None, :, :] * dims[:, None, :] # (1, 8, 3) * (n, 1, 3) -> (n, 8, 3)

    # 2. rotate around y axis
    rot_sin, rot_cos = np.sin(angles), np.cos(angles)
    # in fact, angle
    rot_mat = np.array([[rot_cos, np.zeros_like(rot_cos), rot_sin],
                        [np.zeros_like(rot_cos), np.ones_like(rot_cos), np.zeros_like(rot_cos)],
                        [-rot_sin, np.zeros_like(rot_cos), rot_cos]], 
                        dtype=np.float32) # (3, 3, n)
    rot_mat = np.transpose(rot_mat, (2, 1, 0)) # (n, 3, 3)
    bboxes_corners = bboxes_corners @ rot_mat # (n, 8, 3)

    # 3. translate to centers
    bboxes_corners += centers[:, None, :]
    return bboxes_corners


def group_rectangle_vertexs(bboxes_corners):
    '''
    bboxes_corners: shape=(n, 8, 3)
    return: shape=(n, 6, 4, 3)
    '''
    rec1 = np.stack([bboxes_corners[:, 0], bboxes_corners[:, 1], bboxes_corners[:, 3], bboxes_corners[:, 2]], axis=1) # (n, 4, 3)
    rec2 = np.stack([bboxes_corners[:, 4], bboxes_corners[:, 7], bboxes_corners[:, 6], bboxes_corners[:, 5]], axis=1) # (n, 4, 3)
    rec3 = np.stack([bboxes_corners[:, 0], bboxes_corners[:, 4], bboxes_corners[:, 5], bboxes_corners[:, 1]], axis=1) # (n, 4, 3)
    rec4 = np.stack([bboxes_corners[:, 2], bboxes_corners[:, 6], bboxes_corners[:, 7], bboxes_corners[:, 3]], axis=1) # (n, 4, 3)
    rec5 = np.stack([bboxes_corners[:, 1], bboxes_corners[:, 5], bboxes_corners[:, 6], bboxes_corners[:, 2]], axis=1) # (n, 4, 3)
    rec6 = np.stack([bboxes_corners[:, 0], bboxes_corners[:, 3], bboxes_corners[:, 7], bboxes_corners[:, 4]], axis=1) # (n, 4, 3)
    group_rectangle_vertexs = np.stack([rec1, rec2, rec3, rec4, rec5, rec6], axis=1)
    return group_rectangle_vertexs


@numba.jit(nopython=True)
def bevcorner2alignedbbox(bev_corners):
    '''
    bev_corners: shape=(N, 4, 2)
    return: shape=(N, 4)
    '''
    # xmin, xmax = np.min(bev_corners[:, :, 0], axis=-1), np.max(bev_corners[:, :, 0], axis=-1)
    # ymin, ymax = np.min(bev_corners[:, :, 1], axis=-1), np.max(bev_corners[:, :, 1], axis=-1)

    # why we don't implement like the above ? please see
    # https://numba.pydata.org/numba-doc/latest/reference/numpysupported.html#calculation
    n = len(bev_corners)
    alignedbbox = np.zeros((n, 4), dtype=np.float32)
    for i in range(n):
        cur_bev = bev_corners[i]
        alignedbbox[i, 0] = np.min(cur_bev[:, 0])
        alignedbbox[i, 2] = np.max(cur_bev[:, 0])
        alignedbbox[i, 1] = np.min(cur_bev[:, 1])
        alignedbbox[i, 3] = np.max(cur_bev[:, 1])
    return alignedbbox


# modified from https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/pipelines/data_augment_utils.py#L31
@numba.jit(nopython=True)
def box_collision_test(boxes, qboxes, clockwise=True):
    """Box collision test.
    Args:
        boxes (np.ndarray): Corners of current boxes. # (n1, 4, 2)
        qboxes (np.ndarray): Boxes to be avoid colliding. # (n2, 4, 2)
        clockwise (bool, optional): Whether the corners are in
            clockwise order. Default: True.
    return: shape=(n1, n2)
    """
    N = boxes.shape[0]
    K = qboxes.shape[0]
    ret = np.zeros((N, K), dtype=np.bool_)
    slices = np.array([1, 2, 3, 0])
    lines_boxes = np.stack((boxes, boxes[:, slices, :]),
                           axis=2)  # [N, 4, 2(line), 2(xy)]
    lines_qboxes = np.stack((qboxes, qboxes[:, slices, :]), axis=2)
    # vec = np.zeros((2,), dtype=boxes.dtype)
    boxes_standup = bevcorner2alignedbbox(boxes)
    qboxes_standup = bevcorner2alignedbbox(qboxes)
    for i in range(N):
        for j in range(K):
            # calculate standup first
            iw = (
                min(boxes_standup[i, 2], qboxes_standup[j, 2]) -
                max(boxes_standup[i, 0], qboxes_standup[j, 0]))
            if iw > 0:
                ih = (
                    min(boxes_standup[i, 3], qboxes_standup[j, 3]) -
                    max(boxes_standup[i, 1], qboxes_standup[j, 1]))
                if ih > 0:
                    for k in range(4):
                        for box_l in range(4):
                            A = lines_boxes[i, k, 0]
                            B = lines_boxes[i, k, 1]
                            C = lines_qboxes[j, box_l, 0]
                            D = lines_qboxes[j, box_l, 1]
                            acd = (D[1] - A[1]) * (C[0] -
                                                   A[0]) > (C[1] - A[1]) * (
                                                       D[0] - A[0])
                            bcd = (D[1] - B[1]) * (C[0] -
                                                   B[0]) > (C[1] - B[1]) * (
                                                       D[0] - B[0])
                            if acd != bcd:
                                abc = (C[1] - A[1]) * (B[0] - A[0]) > (
                                    B[1] - A[1]) * (
                                        C[0] - A[0])
                                abd = (D[1] - A[1]) * (B[0] - A[0]) > (
                                    B[1] - A[1]) * (
                                        D[0] - A[0])
                                if abc != abd:
                                    ret[i, j] = True  # collision.
                                    break
                        if ret[i, j] is True:
                            break
                    if ret[i, j] is False:
                        # now check complete overlap.
                        # box overlap qbox:
                        box_overlap_qbox = True
                        for box_l in range(4):  # point l in qboxes
                            for k in range(4):  # corner k in boxes
                                vec = boxes[i, k] - boxes[i, (k + 1) % 4]
                                if clockwise:
                                    vec = -vec
                                cross = vec[1] * (
                                    boxes[i, k, 0] - qboxes[j, box_l, 0])
                                cross -= vec[0] * (
                                    boxes[i, k, 1] - qboxes[j, box_l, 1])
                                if cross >= 0:
                                    box_overlap_qbox = False
                                    break
                            if box_overlap_qbox is False:
                                break

                        if box_overlap_qbox is False:
                            qbox_overlap_box = True
                            for box_l in range(4):  # point box_l in boxes
                                for k in range(4):  # corner k in qboxes
                                    vec = qboxes[j, k] - qboxes[j, (k + 1) % 4]
                                    if clockwise:
                                        vec = -vec
                                    cross = vec[1] * (
                                        qboxes[j, k, 0] - boxes[i, box_l, 0])
                                    cross -= vec[0] * (
                                        qboxes[j, k, 1] - boxes[i, box_l, 1])
                                    if cross >= 0:  #
                                        qbox_overlap_box = False
                                        break
                                if qbox_overlap_box is False:
                                    break
                            if qbox_overlap_box:
                                ret[i, j] = True  # collision.
                        else:
                            ret[i, j] = True  # collision.
    return ret


def group_plane_equation(bbox_group_rectangle_vertexs):
    '''
    bbox_group_rectangle_vertexs: shape=(n, 6, 4, 3)
    return: shape=(n, 6, 4)
    '''
    # 1. generate vectors for a x b
    vectors = bbox_group_rectangle_vertexs[:, :, :2] - bbox_group_rectangle_vertexs[:, :, 1:3]
    normal_vectors = np.cross(vectors[:, :, 0], vectors[:, :, 1]) # (n, 6, 3)
    normal_d = np.einsum('ijk,ijk->ij', bbox_group_rectangle_vertexs[:, :, 0], normal_vectors) # (n, 6)
    plane_equation_params = np.concatenate([normal_vectors, -normal_d[:, :, None]], axis=-1)
    return plane_equation_params


@numba.jit(nopython=True)
def points_in_bboxes(points, plane_equation_params):
    '''
    points: shape=(N, 3)
    plane_equation_params: shape=(n, 6, 4)
    return: shape=(N, n), bool
    '''
    N, n = len(points), len(plane_equation_params)
    m = plane_equation_params.shape[1]
    masks = np.ones((N, n), dtype=np.bool_)
    for i in range(N):
        x, y, z = points[i, :3]
        for j in range(n):
            bbox_plane_equation_params = plane_equation_params[j]
            for k in range(m):
                a, b, c, d = bbox_plane_equation_params[k]
                if a * x + b * y + c * z + d >= 0:
                    masks[i][j] = False
                    break
    return masks


def remove_pts_in_bboxes(points, bboxes, rm=True):
    '''
    points: shape=(N, 3)
    bboxes: shape=(n, 7)
    return: shape=(N, n), bool
    '''
    # 1. get 6 groups of rectangle vertexs
    bboxes_corners = bbox3d2corners(bboxes) # (n, 8, 3)
    bbox_group_rectangle_vertexs = group_rectangle_vertexs(bboxes_corners) # (n, 6, 4, 3)

    # 2. calculate plane equation: ax + by + cd + d = 0
    group_plane_equation_params = group_plane_equation(bbox_group_rectangle_vertexs)

    # 3. Judge each point inside or outside the bboxes
    # if point (x0, y0, z0) lies on the direction of normal vector(a, b, c), then ax0 + by0 + cz0 + d > 0.
    masks = points_in_bboxes(points, group_plane_equation_params) # (N, n)

    if not rm:
        return masks
        
    # 4. remove point insider the bboxes
    masks = np.any(masks, axis=-1)

    return points[~masks]


# modified from https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/core/bbox/structures/utils.py#L11
def limit_period(val, offset=0.5, period=np.pi):
    """
    val: array or float
    offset: float
    period: float
    return: Value in the range of [-offset * period, (1-offset) * period]
    """
    limited_val = val - np.floor(val / period + offset) * period
    return limited_val


def nearest_bev(bboxes):
    '''
    bboxes: (n, 7), (x, y, z, w, l, h, theta)
    return: (n, 4), (x1, y1, x2, y2)
    '''    
    bboxes_bev = copy.deepcopy(bboxes[:, [0, 1, 3, 4]])
    bboxes_angle = limit_period(bboxes[:, 6].cpu(), offset=0.5, period=np.pi).to(bboxes_bev)
    bboxes_bev = torch.where(torch.abs(bboxes_angle[:, None]) > np.pi / 4, bboxes_bev[:, [0, 1, 3, 2]], bboxes_bev)
    
    bboxes_xy = bboxes_bev[:, :2]
    bboxes_wl = bboxes_bev[:, 2:]
    bboxes_bev_x1y1x2y2 = torch.cat([bboxes_xy - bboxes_wl / 2, bboxes_xy + bboxes_wl / 2], dim=-1)
    return bboxes_bev_x1y1x2y2


def iou2d(bboxes1, bboxes2, metric=0):
    '''
    bboxes1: (n, 4), (x1, y1, x2, y2)
    bboxes2: (m, 4), (x1, y1, x2, y2)
    return: (n, m)
    '''
    bboxes_x1 = torch.maximum(bboxes1[:, 0][:, None], bboxes2[:, 0][None, :]) # (n, m)
    bboxes_y1 = torch.maximum(bboxes1[:, 1][:, None], bboxes2[:, 1][None, :]) # (n, m)
    bboxes_x2 = torch.minimum(bboxes1[:, 2][:, None], bboxes2[:, 2][None, :])
    bboxes_y2 = torch.minimum(bboxes1[:, 3][:, None], bboxes2[:, 3][None, :])

    bboxes_w = torch.clamp(bboxes_x2 - bboxes_x1, min=0)
    bboxes_h = torch.clamp(bboxes_y2 - bboxes_y1, min=0)

    iou_area = bboxes_w * bboxes_h # (n, m)
    
    bboxes1_wh = bboxes1[:, 2:] - bboxes1[:, :2]
    area1 = bboxes1_wh[:, 0] * bboxes1_wh[:, 1] # (n, )
    bboxes2_wh = bboxes2[:, 2:] - bboxes2[:, :2]
    area2 = bboxes2_wh[:, 0] * bboxes2_wh[:, 1] # (m, )
    if metric == 0:
        iou = iou_area / (area1[:, None] + area2[None, :] - iou_area + 1e-8)
    elif metric == 1:
        iou = iou_area / (area1[:, None] + 1e-8)
    return iou


def iou2d_nearest(bboxes1, bboxes2):
    '''
    bboxes1: (n, 7), (x, y, z, w, l, h, theta)
    bboxes2: (m, 7),
    return: (n, m)
    '''
    bboxes1_bev = nearest_bev(bboxes1)
    bboxes2_bev = nearest_bev(bboxes2)
    iou = iou2d(bboxes1_bev, bboxes2_bev)
    return iou


def iou3d(bboxes1, bboxes2):
    '''
    bboxes1: (n, 7), (x, y, z, w, l, h, theta)
    bboxes2: (m, 7)
    return: (n, m)
    '''
    # 1. height overlap
    bboxes1_bottom, bboxes2_bottom = bboxes1[:, 2], bboxes2[:, 2] # (n, ), (m, )
    bboxes1_top, bboxes2_top = bboxes1[:, 2] + bboxes1[:, 5], bboxes2[:, 2] + bboxes2[:, 5] # (n, ), (m, )
    bboxes_bottom = torch.maximum(bboxes1_bottom[:, None], bboxes2_bottom[None, :]) # (n, m) 
    bboxes_top = torch.minimum(bboxes1_top[:, None], bboxes2_top[None, :])
    height_overlap =  torch.clamp(bboxes_top - bboxes_bottom, min=0)

    # 2. bev overlap
    bboxes1_x1y1 = bboxes1[:, :2] - bboxes1[:, 3:5] / 2
    bboxes1_x2y2 = bboxes1[:, :2] + bboxes1[:, 3:5] / 2
    bboxes2_x1y1 = bboxes2[:, :2] - bboxes2[:, 3:5] / 2
    bboxes2_x2y2 = bboxes2[:, :2] + bboxes2[:, 3:5] / 2
    bboxes1_bev = torch.cat([bboxes1_x1y1, bboxes1_x2y2, bboxes1[:, 6:]], dim=-1)
    bboxes2_bev = torch.cat([bboxes2_x1y1, bboxes2_x2y2, bboxes2[:, 6:]], dim=-1)
    bev_overlap = boxes_overlap_bev(bboxes1_bev, bboxes2_bev) # (n, m)

    # 3. overlap and volume
    overlap = height_overlap * bev_overlap
    volume1 = bboxes1[:, 3] * bboxes1[:, 4] * bboxes1[:, 5]
    volume2 = bboxes2[:, 3] * bboxes2[:, 4] * bboxes2[:, 5]
    volume = volume1[:, None] + volume2[None, :] # (n, m)

    # 4. iou
    iou = overlap / (volume - overlap + 1e-8)

    return iou
    

def iou3d_camera(bboxes1, bboxes2):
    '''
    bboxes1: (n, 7), (x, y, z, w, l, h, theta)
    bboxes2: (m, 7)
    return: (n, m)
    '''
    # 1. height overlap
    bboxes1_bottom, bboxes2_bottom = bboxes1[:, 1] - bboxes1[:, 4], bboxes2[:, 1] -  bboxes2[:, 4] # (n, ), (m, )
    bboxes1_top, bboxes2_top = bboxes1[:, 1], bboxes2[:, 1] # (n, ), (m, )
    bboxes_bottom = torch.maximum(bboxes1_bottom[:, None], bboxes2_bottom[None, :]) # (n, m) 
    bboxes_top = torch.minimum(bboxes1_top[:, None], bboxes2_top[None, :])
    height_overlap =  torch.clamp(bboxes_top - bboxes_bottom, min=0)

    # 2. bev overlap
    bboxes1_x1y1 = bboxes1[:, [0, 2]] - bboxes1[:, [3, 5]] / 2
    bboxes1_x2y2 = bboxes1[:, [0, 2]] + bboxes1[:, [3, 5]] / 2
    bboxes2_x1y1 = bboxes2[:, [0, 2]] - bboxes2[:, [3, 5]] / 2
    bboxes2_x2y2 = bboxes2[:, [0, 2]] + bboxes2[:, [3, 5]] / 2
    bboxes1_bev = torch.cat([bboxes1_x1y1, bboxes1_x2y2, bboxes1[:, 6:]], dim=-1)
    bboxes2_bev = torch.cat([bboxes2_x1y1, bboxes2_x2y2, bboxes2[:, 6:]], dim=-1)
    bev_overlap = boxes_overlap_bev(bboxes1_bev, bboxes2_bev) # (n, m)

    # 3. overlap and volume
    overlap = height_overlap * bev_overlap
    volume1 = bboxes1[:, 3] * bboxes1[:, 4] * bboxes1[:, 5]
    volume2 = bboxes2[:, 3] * bboxes2[:, 4] * bboxes2[:, 5]
    volume = volume1[:, None] + volume2[None, :] # (n, m)

    # 4. iou
    iou = overlap / (volume - overlap + 1e-8)

    return iou


def iou_bev(bboxes1, bboxes2):
    '''
    bboxes1: (n, 5), (x, z, w, h, theta)
    bboxes2: (m, 5)
    return: (n, m)
    '''
    bboxes1_x1y1 = bboxes1[:, :2] - bboxes1[:, 2:4] / 2
    bboxes1_x2y2 = bboxes1[:, :2] + bboxes1[:, 2:4] / 2
    bboxes2_x1y1 = bboxes2[:, :2] - bboxes2[:, 2:4] / 2
    bboxes2_x2y2 = bboxes2[:, :2] + bboxes2[:, 2:4] / 2
    bboxes1_bev = torch.cat([bboxes1_x1y1, bboxes1_x2y2, bboxes1[:, 4:]], dim=-1)
    bboxes2_bev = torch.cat([bboxes2_x1y1, bboxes2_x2y2, bboxes2[:, 4:]], dim=-1)
    bev_overlap = boxes_iou_bev(bboxes1_bev, bboxes2_bev) # (n, m)

    return bev_overlap


def keep_bbox_from_image_range(result, tr_velo_to_cam, r0_rect, P2, image_shape):
    '''
    result: dict(lidar_bboxes, labels, scores)
    tr_velo_to_cam: shape=(4, 4)
    r0_rect: shape=(4, 4)
    P2: shape=(4, 4)
    image_shape: (h, w)
    return: dict(lidar_bboxes, labels, scores, bboxes2d, camera_bboxes)
    '''
    h, w = image_shape

    lidar_bboxes = result['lidar_bboxes']
    labels = result['labels']
    scores = result['scores']
    camera_bboxes = bbox_lidar2camera(lidar_bboxes, tr_velo_to_cam, r0_rect) # (n, 7)
    bboxes_points = bbox3d2corners_camera(camera_bboxes) # (n, 8, 3)
    image_points = points_camera2image(bboxes_points, P2) # (n, 8, 2)
    image_x1y1 = np.min(image_points, axis=1) # (n, 2)
    image_x1y1 = np.maximum(image_x1y1, 0)
    image_x2y2 = np.max(image_points, axis=1) # (n, 2)
    image_x2y2 = np.minimum(image_x2y2, [w, h])
    bboxes2d = np.concatenate([image_x1y1, image_x2y2], axis=-1)

    keep_flag = (image_x1y1[:, 0] < w) & (image_x1y1[:, 1] < h) & (image_x2y2[:, 0] > 0) & (image_x2y2[:, 1] > 0)
    
    result = {
        'lidar_bboxes': lidar_bboxes[keep_flag],
        'labels': labels[keep_flag],
        'scores': scores[keep_flag],
        'bboxes2d': bboxes2d[keep_flag],
        'camera_bboxes': camera_bboxes[keep_flag]
    }
    return result


def keep_bbox_from_lidar_range(result, pcd_limit_range):
    '''
    result: dict(lidar_bboxes, labels, scores, bboxes2d, camera_bboxes)
    pcd_limit_range: []
    return: dict(lidar_bboxes, labels, scores, bboxes2d, camera_bboxes)
    '''
    lidar_bboxes, labels, scores = result['lidar_bboxes'], result['labels'], result['scores']
    if 'bboxes2d' not in result:
        result['bboxes2d'] = np.zeros_like(lidar_bboxes[:, :4])
    if 'camera_bboxes' not in result:
        result['camera_bboxes'] = np.zeros_like(lidar_bboxes)
    bboxes2d, camera_bboxes = result['bboxes2d'], result['camera_bboxes']
    flag1 = lidar_bboxes[:, :3] > pcd_limit_range[:3][None, :] # (n, 3)
    flag2 = lidar_bboxes[:, :3] < pcd_limit_range[3:][None, :] # (n, 3)
    keep_flag = np.all(flag1, axis=-1) & np.all(flag2, axis=-1)
    
    result = {
        'lidar_bboxes': lidar_bboxes[keep_flag],
        'labels': labels[keep_flag],
        'scores': scores[keep_flag],
        'bboxes2d': bboxes2d[keep_flag],
        'camera_bboxes': camera_bboxes[keep_flag]
    }
    return result


def points_in_bboxes_v2(points, r0_rect, tr_velo_to_cam, dimensions, location, rotation_y, name):
    '''
    points: shape=(N, 4) 
    tr_velo_to_cam: shape=(4, 4)
    r0_rect: shape=(4, 4)
    dimensions: shape=(n, 3) 
    location: shape=(n, 3) 
    rotation_y: shape=(n, ) 
    name: shape=(n, )
    return:
        indices: shape=(N, n_valid_bbox), indices[i, j] denotes whether point i is in bbox j. 
        n_total_bbox: int. 
        n_valid_bbox: int, not including 'DontCare' 
        bboxes_lidar: shape=(n_valid_bbox, 7) 
        name: shape=(n_valid_bbox, )
    '''
    n_total_bbox = len(dimensions)
    n_valid_bbox = len([item for item in name if item != 'DontCare'])
    location, dimensions = location[:n_valid_bbox], dimensions[:n_valid_bbox]
    rotation_y, name = rotation_y[:n_valid_bbox], name[:n_valid_bbox]
    bboxes_camera = np.concatenate([location, dimensions, rotation_y[:, None]], axis=1)
    bboxes_lidar = bbox_camera2lidar(bboxes_camera, tr_velo_to_cam, r0_rect)
    bboxes_corners = bbox3d2corners(bboxes_lidar)
    group_rectangle_vertexs_v = group_rectangle_vertexs(bboxes_corners)
    frustum_surfaces = group_plane_equation(group_rectangle_vertexs_v)
    indices = points_in_bboxes(points[:, :3], frustum_surfaces) # (N, n), N is points num, n is bboxes number
    return indices, n_total_bbox, n_valid_bbox, bboxes_lidar, name


def get_points_num_in_bbox(points, r0_rect, tr_velo_to_cam, dimensions, location, rotation_y, name):
    '''
    points: shape=(N, 4) 
    tr_velo_to_cam: shape=(4, 4)
    r0_rect: shape=(4, 4)
    dimensions: shape=(n, 3) 
    location: shape=(n, 3) 
    rotation_y: shape=(n, ) 
    name: shape=(n, )
    return: shape=(n, )
    '''
    indices, n_total_bbox, n_valid_bbox, bboxes_lidar, name = \
        points_in_bboxes_v2(
            points=points, 
            r0_rect=r0_rect, 
            tr_velo_to_cam=tr_velo_to_cam, 
            dimensions=dimensions, 
            location=location, 
            rotation_y=rotation_y, 
            name=name)
    points_num = np.sum(indices, axis=0)
    non_valid_points_num = [-1] * (n_total_bbox - n_valid_bbox)
    points_num = np.concatenate([points_num, non_valid_points_num], axis=0)
    return np.array(points_num, dtype=np.int32)


# Modified from https://github.com/open-mmlab/mmdetection3d/blob/f45977008a52baaf97640a0e9b2bbe5ea1c4be34/mmdet3d/core/bbox/box_np_ops.py#L609
def remove_outside_points(points, r0_rect, tr_velo_to_cam, P2, image_shape):
    """Remove points which are outside of image.
    Args:
        points (np.ndarray, shape=[N, 3+dims]): Total points.
        rect (np.ndarray, shape=[4, 4]): Matrix to project points in
            specific camera coordinate (e.g. CAM2) to CAM0.
        Trv2c (np.ndarray, shape=[4, 4]): Matrix to project points in
            camera coordinate to lidar coordinate.
        P2 (p.array, shape=[4, 4]): Intrinsics of Camera2.
        image_shape (list[int]): Shape of image.
    Returns:
        np.ndarray, shape=[N, 3+dims]: Filtered points.
    """
    # 5x faster than remove_outside_points_v1(2ms vs 10ms)
    C, R, T = projection_matrix_to_CRT_kitti(P2)
    image_bbox = [0, 0, image_shape[1], image_shape[0]]
    frustum = get_frustum(image_bbox, C)
    frustum -= T
    frustum = np.linalg.inv(R) @ frustum.T
    frustum = points_camera2lidar(frustum.T[None, ...], tr_velo_to_cam, r0_rect) # (1, 8, 3)
    group_rectangle_vertexs_v = group_rectangle_vertexs(frustum)
    frustum_surfaces = group_plane_equation(group_rectangle_vertexs_v)
    indices = points_in_bboxes(points[:, :3], frustum_surfaces) # (N, 1)
    points = points[indices.reshape([-1])]
    return points


# Copied from https://github.com/open-mmlab/mmdetection3d/blob/f45977008a52baaf97640a0e9b2bbe5ea1c4be34/mmdet3d/core/bbox/box_np_ops.py#L609
def projection_matrix_to_CRT_kitti(proj):
    """Split projection matrix of kitti.
    P = C @ [R|T]
    C is upper triangular matrix, so we need to inverse CR and use QR
    stable for all kitti camera projection matrix.
    Args:
        proj (p.array, shape=[4, 4]): Intrinsics of camera.
    Returns:
        tuple[np.ndarray]: Splited matrix of C, R and T.
    """

    CR = proj[0:3, 0:3]
    CT = proj[0:3, 3]
    RinvCinv = np.linalg.inv(CR)
    Rinv, Cinv = np.linalg.qr(RinvCinv)
    C = np.linalg.inv(Cinv)
    R = np.linalg.inv(Rinv)
    T = Cinv @ CT
    return C, R, T


# Copied from https://github.com/open-mmlab/mmdetection3d/blob/f45977008a52baaf97640a0e9b2bbe5ea1c4be34/mmdet3d/core/bbox/box_np_ops.py#L661
def get_frustum(bbox_image, C, near_clip=0.001, far_clip=100):
    """Get frustum corners in camera coordinates.
    Args:
        bbox_image (list[int]): box in image coordinates.
        C (np.ndarray): Intrinsics.
        near_clip (float, optional): Nearest distance of frustum.
            Defaults to 0.001.
        far_clip (float, optional): Farthest distance of frustum.
            Defaults to 100.
    Returns:
        np.ndarray, shape=[8, 3]: coordinates of frustum corners.
    """
    fku = C[0, 0]
    fkv = -C[1, 1]
    u0v0 = C[0:2, 2]
    z_points = np.array(
        [near_clip] * 4 + [far_clip] * 4, dtype=C.dtype)[:, np.newaxis]
    b = bbox_image
    box_corners = np.array(
        [[b[0], b[1]], [b[0], b[3]], [b[2], b[3]], [b[2], b[1]]],
        dtype=C.dtype)
    near_box_corners = (box_corners - u0v0) / np.array(
        [fku / near_clip, -fkv / near_clip], dtype=C.dtype)
    far_box_corners = (box_corners - u0v0) / np.array(
        [fku / far_clip, -fkv / far_clip], dtype=C.dtype)
    ret_xy = np.concatenate([near_box_corners, far_box_corners],
                            axis=0)  # [8, 2]
    ret_xyz = np.concatenate([ret_xy, z_points], axis=1)
    return ret_xyz