pointpillars.py 19 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import numpy as np
import pdb
import torch
import torch.nn as nn
import torch.nn.functional as F
from pointpillars.model.anchors import Anchors, anchor_target, anchors2bboxes
from pointpillars.ops import Voxelization, nms_cuda
from pointpillars.utils import limit_period


class PillarLayer(nn.Module):
    def __init__(self, voxel_size, point_cloud_range, max_num_points, max_voxels):
        super().__init__()
        self.voxel_layer = Voxelization(voxel_size=voxel_size,
                                        point_cloud_range=point_cloud_range,
                                        max_num_points=max_num_points,
                                        max_voxels=max_voxels)

    @torch.no_grad()
    def forward(self, batched_pts):
        '''
        batched_pts: list[tensor], len(batched_pts) = bs
        return: 
               pillars: (p1 + p2 + ... + pb, num_points, c), 
               coors_batch: (p1 + p2 + ... + pb, 1 + 3), 
               num_points_per_pillar: (p1 + p2 + ... + pb, ), (b: batch size)
        '''
        pillars, coors, npoints_per_pillar = [], [], []
        for i, pts in enumerate(batched_pts):
            voxels_out, coors_out, num_points_per_voxel_out = self.voxel_layer(pts) 
            # voxels_out: (max_voxel, num_points, c), coors_out: (max_voxel, 3)
            # num_points_per_voxel_out: (max_voxel, )
            pillars.append(voxels_out)
            coors.append(coors_out.long())
            npoints_per_pillar.append(num_points_per_voxel_out)
        
        pillars = torch.cat(pillars, dim=0) # (p1 + p2 + ... + pb, num_points, c)
        npoints_per_pillar = torch.cat(npoints_per_pillar, dim=0) # (p1 + p2 + ... + pb, )
        coors_batch = []
        for i, cur_coors in enumerate(coors):
            coors_batch.append(F.pad(cur_coors, (1, 0), value=i))
        coors_batch = torch.cat(coors_batch, dim=0) # (p1 + p2 + ... + pb, 1 + 3)

        return pillars, coors_batch, npoints_per_pillar


class PillarEncoder(nn.Module):
    def __init__(self, voxel_size, point_cloud_range, in_channel, out_channel):
        super().__init__()
        self.out_channel = out_channel
        self.vx, self.vy = voxel_size[0], voxel_size[1]
        self.x_offset = voxel_size[0] / 2 + point_cloud_range[0]
        self.y_offset = voxel_size[1] / 2 + point_cloud_range[1]
        self.x_l = int((point_cloud_range[3] - point_cloud_range[0]) / voxel_size[0])
        self.y_l = int((point_cloud_range[4] - point_cloud_range[1]) / voxel_size[1])

        self.conv = nn.Conv1d(in_channel, out_channel, 1, bias=False)
        self.bn = nn.BatchNorm1d(out_channel, eps=1e-3, momentum=0.01)

    def forward(self, pillars, coors_batch, npoints_per_pillar):
        '''
        pillars: (p1 + p2 + ... + pb, num_points, c), c = 4
        coors_batch: (p1 + p2 + ... + pb, 1 + 3)
        npoints_per_pillar: (p1 + p2 + ... + pb, )
        return:  (bs, out_channel, y_l, x_l)
        '''
        device = pillars.device
        # 1. calculate offset to the points center (in each pillar)
        offset_pt_center = pillars[:, :, :3] - torch.sum(pillars[:, :, :3], dim=1, keepdim=True) / npoints_per_pillar[:, None, None] # (p1 + p2 + ... + pb, num_points, 3)

        # 2. calculate offset to the pillar center
        x_offset_pi_center = pillars[:, :, :1] - (coors_batch[:, None, 1:2] * self.vx + self.x_offset) # (p1 + p2 + ... + pb, num_points, 1)
        y_offset_pi_center = pillars[:, :, 1:2] - (coors_batch[:, None, 2:3] * self.vy + self.y_offset) # (p1 + p2 + ... + pb, num_points, 1)

        # 3. encoder
        features = torch.cat([pillars, offset_pt_center, x_offset_pi_center, y_offset_pi_center], dim=-1) # (p1 + p2 + ... + pb, num_points, 9)
        features[:, :, 0:1] = x_offset_pi_center # tmp
        features[:, :, 1:2] = y_offset_pi_center # tmp
        # In consitent with mmdet3d. 
        # The reason can be referenced to https://github.com/open-mmlab/mmdetection3d/issues/1150

        # 4. find mask for (0, 0, 0) and update the encoded features
        # a very beautiful implementation
        voxel_ids = torch.arange(0, pillars.size(1)).to(device) # (num_points, )
        mask = voxel_ids[:, None] < npoints_per_pillar[None, :] # (num_points, p1 + p2 + ... + pb)
        mask = mask.permute(1, 0).contiguous()  # (p1 + p2 + ... + pb, num_points)
        features *= mask[:, :, None]

        # 5. embedding
        features = features.permute(0, 2, 1).contiguous() # (p1 + p2 + ... + pb, 9, num_points)
        features = F.relu(self.bn(self.conv(features)))  # (p1 + p2 + ... + pb, out_channels, num_points)
        pooling_features = torch.max(features, dim=-1)[0] # (p1 + p2 + ... + pb, out_channels)

        # 6. pillar scatter
        batched_canvas = []
        bs = coors_batch[-1, 0] + 1
        for i in range(bs):
            cur_coors_idx = coors_batch[:, 0] == i
            cur_coors = coors_batch[cur_coors_idx, :]
            cur_features = pooling_features[cur_coors_idx]

            canvas = torch.zeros((self.x_l, self.y_l, self.out_channel), dtype=torch.float32, device=device)
            canvas[cur_coors[:, 1], cur_coors[:, 2]] = cur_features
            canvas = canvas.permute(2, 1, 0).contiguous()
            batched_canvas.append(canvas)
        batched_canvas = torch.stack(batched_canvas, dim=0) # (bs, in_channel, self.y_l, self.x_l)
        return batched_canvas


class Backbone(nn.Module):
    def __init__(self, in_channel, out_channels, layer_nums, layer_strides=[2, 2, 2]):
        super().__init__()
        assert len(out_channels) == len(layer_nums)
        assert len(out_channels) == len(layer_strides)
        
        self.multi_blocks = nn.ModuleList()
        for i in range(len(layer_strides)):
            blocks = []
            blocks.append(nn.Conv2d(in_channel, out_channels[i], 3, stride=layer_strides[i], bias=False, padding=1))
            blocks.append(nn.BatchNorm2d(out_channels[i], eps=1e-3, momentum=0.01))
            blocks.append(nn.ReLU(inplace=True))

            for _ in range(layer_nums[i]):
                blocks.append(nn.Conv2d(out_channels[i], out_channels[i], 3, bias=False, padding=1))
                blocks.append(nn.BatchNorm2d(out_channels[i], eps=1e-3, momentum=0.01))
                blocks.append(nn.ReLU(inplace=True))

            in_channel = out_channels[i]
            self.multi_blocks.append(nn.Sequential(*blocks))

        # in consitent with mmdet3d
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    def forward(self, x):
        '''
        x: (b, c, y_l, x_l). Default: (6, 64, 496, 432)
        return: list[]. Default: [(6, 64, 248, 216), (6, 128, 124, 108), (6, 256, 62, 54)]
        '''
        outs = []
        for i in range(len(self.multi_blocks)):
            x = self.multi_blocks[i](x)
            outs.append(x)
        return outs


class Neck(nn.Module):
    def __init__(self, in_channels, upsample_strides, out_channels):
        super().__init__()
        assert len(in_channels) == len(upsample_strides)
        assert len(upsample_strides) == len(out_channels)

        self.decoder_blocks = nn.ModuleList()
        for i in range(len(in_channels)):
            decoder_block = []
            decoder_block.append(nn.ConvTranspose2d(in_channels[i], 
                                                    out_channels[i], 
                                                    upsample_strides[i], 
                                                    stride=upsample_strides[i],
                                                    bias=False))
            decoder_block.append(nn.BatchNorm2d(out_channels[i], eps=1e-3, momentum=0.01))
            decoder_block.append(nn.ReLU(inplace=True))

            self.decoder_blocks.append(nn.Sequential(*decoder_block))
        
        # in consitent with mmdet3d
        for m in self.modules():
            if isinstance(m, nn.ConvTranspose2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    def forward(self, x):
        '''
        x: [(bs, 64, 248, 216), (bs, 128, 124, 108), (bs, 256, 62, 54)]
        return: (bs, 384, 248, 216)
        '''
        outs = []
        for i in range(len(self.decoder_blocks)):
            xi = self.decoder_blocks[i](x[i]) # (bs, 128, 248, 216)
            outs.append(xi)
        out = torch.cat(outs, dim=1)
        return out


class Head(nn.Module):
    def __init__(self, in_channel, n_anchors, n_classes):
        super().__init__()
        
        self.conv_cls = nn.Conv2d(in_channel, n_anchors*n_classes, 1)
        self.conv_reg = nn.Conv2d(in_channel, n_anchors*7, 1)
        self.conv_dir_cls = nn.Conv2d(in_channel, n_anchors*2, 1)

        # in consitent with mmdet3d
        conv_layer_id = 0
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.normal_(m.weight, mean=0, std=0.01)
                if conv_layer_id == 0:
                    prior_prob = 0.01
                    bias_init = float(-np.log((1 - prior_prob) / prior_prob))
                    nn.init.constant_(m.bias, bias_init)
                else:
                    nn.init.constant_(m.bias, 0)
                conv_layer_id += 1

    def forward(self, x):
        '''
        x: (bs, 384, 248, 216)
        return: 
              bbox_cls_pred: (bs, n_anchors*3, 248, 216) 
              bbox_pred: (bs, n_anchors*7, 248, 216)
              bbox_dir_cls_pred: (bs, n_anchors*2, 248, 216)
        '''
        bbox_cls_pred = self.conv_cls(x)
        bbox_pred = self.conv_reg(x)
        bbox_dir_cls_pred = self.conv_dir_cls(x)
        return bbox_cls_pred, bbox_pred, bbox_dir_cls_pred


class PointPillars(nn.Module):
    def __init__(self,
                 nclasses=3, 
                 voxel_size=[0.16, 0.16, 4],
                 point_cloud_range=[0, -39.68, -3, 69.12, 39.68, 1],
                 max_num_points=32,
                 max_voxels=(16000, 40000)):
        super().__init__()
        self.nclasses = nclasses
        self.pillar_layer = PillarLayer(voxel_size=voxel_size, 
                                        point_cloud_range=point_cloud_range, 
                                        max_num_points=max_num_points, 
                                        max_voxels=max_voxels)
        self.pillar_encoder = PillarEncoder(voxel_size=voxel_size, 
                                            point_cloud_range=point_cloud_range, 
                                            in_channel=9, 
                                            out_channel=64)
        self.backbone = Backbone(in_channel=64, 
                                 out_channels=[64, 128, 256], 
                                 layer_nums=[3, 5, 5])
        self.neck = Neck(in_channels=[64, 128, 256], 
                         upsample_strides=[1, 2, 4], 
                         out_channels=[128, 128, 128])
        self.head = Head(in_channel=384, n_anchors=2*nclasses, n_classes=nclasses)
        
        # anchors
        ranges = [[0, -39.68, -0.6, 69.12, 39.68, -0.6],
                    [0, -39.68, -0.6, 69.12, 39.68, -0.6],
                    [0, -39.68, -1.78, 69.12, 39.68, -1.78]]
        sizes = [[0.6, 0.8, 1.73], [0.6, 1.76, 1.73], [1.6, 3.9, 1.56]]
        rotations=[0, 1.57]
        self.anchors_generator = Anchors(ranges=ranges, 
                                         sizes=sizes, 
                                         rotations=rotations)
        
        # train
        self.assigners = [
            {'pos_iou_thr': 0.5, 'neg_iou_thr': 0.35, 'min_iou_thr': 0.35},
            {'pos_iou_thr': 0.5, 'neg_iou_thr': 0.35, 'min_iou_thr': 0.35},
            {'pos_iou_thr': 0.6, 'neg_iou_thr': 0.45, 'min_iou_thr': 0.45},
        ]

        # val and test
        self.nms_pre = 100
        self.nms_thr = 0.01
        self.score_thr = 0.1
        self.max_num = 50

    def get_predicted_bboxes_single(self, bbox_cls_pred, bbox_pred, bbox_dir_cls_pred, anchors):
        '''
        bbox_cls_pred: (n_anchors*3, 248, 216) 
        bbox_pred: (n_anchors*7, 248, 216)
        bbox_dir_cls_pred: (n_anchors*2, 248, 216)
        anchors: (y_l, x_l, 3, 2, 7)
        return: 
            bboxes: (k, 7)
            labels: (k, )
            scores: (k, ) 
        '''
        # 0. pre-process 
        bbox_cls_pred = bbox_cls_pred.permute(1, 2, 0).reshape(-1, self.nclasses)
        bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 7)
        bbox_dir_cls_pred = bbox_dir_cls_pred.permute(1, 2, 0).reshape(-1, 2)
        anchors = anchors.reshape(-1, 7)
        
        bbox_cls_pred = torch.sigmoid(bbox_cls_pred)
        bbox_dir_cls_pred = torch.max(bbox_dir_cls_pred, dim=1)[1]

        # 1. obtain self.nms_pre bboxes based on scores
        inds = bbox_cls_pred.max(1)[0].topk(self.nms_pre)[1]
        bbox_cls_pred = bbox_cls_pred[inds]
        bbox_pred = bbox_pred[inds]
        bbox_dir_cls_pred = bbox_dir_cls_pred[inds]
        anchors = anchors[inds]

        # 2. decode predicted offsets to bboxes
        bbox_pred = anchors2bboxes(anchors, bbox_pred)

        # 3. nms
        bbox_pred2d_xy = bbox_pred[:, [0, 1]]
        bbox_pred2d_lw = bbox_pred[:, [3, 4]]
        bbox_pred2d = torch.cat([bbox_pred2d_xy - bbox_pred2d_lw / 2,
                                 bbox_pred2d_xy + bbox_pred2d_lw / 2,
                                 bbox_pred[:, 6:]], dim=-1) # (n_anchors, 5)

        ret_bboxes, ret_labels, ret_scores = [], [], []
        for i in range(self.nclasses):
            # 3.1 filter bboxes with scores below self.score_thr
            cur_bbox_cls_pred = bbox_cls_pred[:, i]
            score_inds = cur_bbox_cls_pred > self.score_thr
            if score_inds.sum() == 0:
                continue

            cur_bbox_cls_pred = cur_bbox_cls_pred[score_inds]
            cur_bbox_pred2d = bbox_pred2d[score_inds]
            cur_bbox_pred = bbox_pred[score_inds]
            cur_bbox_dir_cls_pred = bbox_dir_cls_pred[score_inds]
            
            # 3.2 nms core
            keep_inds = nms_cuda(boxes=cur_bbox_pred2d, 
                                 scores=cur_bbox_cls_pred, 
                                 thresh=self.nms_thr, 
                                 pre_maxsize=None, 
                                 post_max_size=None)

            cur_bbox_cls_pred = cur_bbox_cls_pred[keep_inds]
            cur_bbox_pred = cur_bbox_pred[keep_inds]
            cur_bbox_dir_cls_pred = cur_bbox_dir_cls_pred[keep_inds]
            cur_bbox_pred[:, -1] = limit_period(cur_bbox_pred[:, -1].detach().cpu(), 1, np.pi).to(cur_bbox_pred) # [-pi, 0]
            cur_bbox_pred[:, -1] += (1 - cur_bbox_dir_cls_pred) * np.pi

            ret_bboxes.append(cur_bbox_pred)
            ret_labels.append(torch.zeros_like(cur_bbox_pred[:, 0], dtype=torch.long) + i)
            ret_scores.append(cur_bbox_cls_pred)

        # 4. filter some bboxes if bboxes number is above self.max_num
        if len(ret_bboxes) == 0:
            return [], [], []
        ret_bboxes = torch.cat(ret_bboxes, 0)
        ret_labels = torch.cat(ret_labels, 0)
        ret_scores = torch.cat(ret_scores, 0)
        if ret_bboxes.size(0) > self.max_num:
            final_inds = ret_scores.topk(self.max_num)[1]
            ret_bboxes = ret_bboxes[final_inds]
            ret_labels = ret_labels[final_inds]
            ret_scores = ret_scores[final_inds]
        result = {
            'lidar_bboxes': ret_bboxes.detach().cpu().numpy(),
            'labels': ret_labels.detach().cpu().numpy(),
            'scores': ret_scores.detach().cpu().numpy()
        }
        return result


    def get_predicted_bboxes(self, bbox_cls_pred, bbox_pred, bbox_dir_cls_pred, batched_anchors):
        '''
        bbox_cls_pred: (bs, n_anchors*3, 248, 216) 
        bbox_pred: (bs, n_anchors*7, 248, 216)
        bbox_dir_cls_pred: (bs, n_anchors*2, 248, 216)
        batched_anchors: (bs, y_l, x_l, 3, 2, 7)
        return: 
            bboxes: [(k1, 7), (k2, 7), ... ]
            labels: [(k1, ), (k2, ), ... ]
            scores: [(k1, ), (k2, ), ... ] 
        '''
        results = []
        bs = bbox_cls_pred.size(0)
        for i in range(bs):
            result = self.get_predicted_bboxes_single(bbox_cls_pred=bbox_cls_pred[i],
                                                      bbox_pred=bbox_pred[i], 
                                                      bbox_dir_cls_pred=bbox_dir_cls_pred[i], 
                                                      anchors=batched_anchors[i])
            results.append(result)
        return results

    def forward(self, batched_pts, mode='test', batched_gt_bboxes=None, batched_gt_labels=None):
        batch_size = len(batched_pts)
        # batched_pts: list[tensor] -> pillars: (p1 + p2 + ... + pb, num_points, c), 
        #                              coors_batch: (p1 + p2 + ... + pb, 1 + 3), 
        #                              num_points_per_pillar: (p1 + p2 + ... + pb, ), (b: batch size)
        pillars, coors_batch, npoints_per_pillar = self.pillar_layer(batched_pts)

        # pillars: (p1 + p2 + ... + pb, num_points, c), c = 4
        # coors_batch: (p1 + p2 + ... + pb, 1 + 3)
        # npoints_per_pillar: (p1 + p2 + ... + pb, )
        #                     -> pillar_features: (bs, out_channel, y_l, x_l)
        pillar_features = self.pillar_encoder(pillars, coors_batch, npoints_per_pillar)

        # xs:  [(bs, 64, 248, 216), (bs, 128, 124, 108), (bs, 256, 62, 54)]
        xs = self.backbone(pillar_features)

        # x: (bs, 384, 248, 216)
        x = self.neck(xs)

        # bbox_cls_pred: (bs, n_anchors*3, 248, 216) 
        # bbox_pred: (bs, n_anchors*7, 248, 216)
        # bbox_dir_cls_pred: (bs, n_anchors*2, 248, 216)
        bbox_cls_pred, bbox_pred, bbox_dir_cls_pred = self.head(x)

        # anchors
        device = bbox_cls_pred.device
        feature_map_size = torch.tensor(list(bbox_cls_pred.size()[-2:]), device=device)
        anchors = self.anchors_generator.get_multi_anchors(feature_map_size)
        batched_anchors = [anchors for _ in range(batch_size)]

        if mode == 'train':
            anchor_target_dict = anchor_target(batched_anchors=batched_anchors, 
                                               batched_gt_bboxes=batched_gt_bboxes, 
                                               batched_gt_labels=batched_gt_labels, 
                                               assigners=self.assigners,
                                               nclasses=self.nclasses)
            
            return bbox_cls_pred, bbox_pred, bbox_dir_cls_pred, anchor_target_dict
        elif mode == 'val':
            results = self.get_predicted_bboxes(bbox_cls_pred=bbox_cls_pred, 
                                                bbox_pred=bbox_pred, 
                                                bbox_dir_cls_pred=bbox_dir_cls_pred, 
                                                batched_anchors=batched_anchors)
            return results

        elif mode == 'test':
            results = self.get_predicted_bboxes(bbox_cls_pred=bbox_cls_pred, 
                                                bbox_pred=bbox_pred, 
                                                bbox_dir_cls_pred=bbox_dir_cls_pred, 
                                                batched_anchors=batched_anchors)
            return results
        else:
            raise ValueError