anchors.py 10.4 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import pdb
import numpy as np
import torch
from pointpillars.utils import limit_period, iou2d_nearest


class Anchors():
    def __init__(self, ranges, sizes, rotations):
        assert len(ranges) == len(sizes)
        self.ranges = ranges
        self.sizes = sizes
        self.rotations = rotations

    def get_anchors(self, feature_map_size, anchor_range, anchor_size, rotations):
        '''
        feature_map_size: (y_l, x_l)
        anchor_range: [x1, y1, z1, x2, y2, z2]
        anchor_size: [w, l, h]
        rotations: [0, 1.57]
        return: shape=(y_l, x_l, 2, 7)
        '''
        device = feature_map_size.device
        x_centers = torch.linspace(anchor_range[0], anchor_range[3], feature_map_size[1] + 1, device=device)
        y_centers = torch.linspace(anchor_range[1], anchor_range[4], feature_map_size[0] + 1, device=device)
        z_centers = torch.linspace(anchor_range[2], anchor_range[5], 1 + 1, device=device)

        x_shift = (x_centers[1] - x_centers[0]) / 2
        y_shift = (y_centers[1] - y_centers[0]) / 2
        z_shift = (z_centers[1] - z_centers[0]) / 2
        x_centers = x_centers[:feature_map_size[1]] + x_shift # (feature_map_size[1], )
        y_centers = y_centers[:feature_map_size[0]] + y_shift # (feature_map_size[0], )
        z_centers = z_centers[:1] + z_shift  # (1, )

        # [feature_map_size[1], feature_map_size[0], 1, 2] * 4
        meshgrids = torch.meshgrid(x_centers, y_centers, z_centers, rotations)
        meshgrids = list(meshgrids)
        for i in range(len(meshgrids)):
            meshgrids[i] = meshgrids[i][..., None] # [feature_map_size[1], feature_map_size[0], 1, 2, 1]
        
        anchor_size = anchor_size[None, None, None, None, :]
        repeat_shape = [feature_map_size[1], feature_map_size[0], 1, len(rotations), 1]
        anchor_size = anchor_size.repeat(repeat_shape) # [feature_map_size[1], feature_map_size[0], 1, 2, 3]
        meshgrids.insert(3, anchor_size)
        anchors = torch.cat(meshgrids, dim=-1).permute(2, 1, 0, 3, 4).contiguous() # [1, feature_map_size[0], feature_map_size[1], 2, 7]
        return anchors.squeeze(0)


    def get_multi_anchors(self, feature_map_size):
        '''
        feature_map_size: (y_l, x_l)
        ranges: [[x1, y1, z1, x2, y2, z2], [x1, y1, z1, x2, y2, z2], [x1, y1, z1, x2, y2, z2]]
        sizes: [[w, l, h], [w, l, h], [w, l, h]]
        rotations: [0, 1.57]
        return: shape=(y_l, x_l, 3, 2, 7)
        '''
        device = feature_map_size.device
        ranges = torch.tensor(self.ranges, device=device)  
        sizes = torch.tensor(self.sizes, device=device) 
        rotations = torch.tensor(self.rotations, device=device)
        multi_anchors = []
        for i in range(len(ranges)):
            anchors = self.get_anchors(feature_map_size=feature_map_size, 
                                       anchor_range=ranges[i], 
                                       anchor_size=sizes[i], 
                                       rotations=rotations)
            multi_anchors.append(anchors[:, :, None, :, :])
        multi_anchors = torch.cat(multi_anchors, dim=2)

        return multi_anchors


def anchors2bboxes(anchors, deltas):
    '''
    anchors: (M, 7),  (x, y, z, w, l, h, theta)
    deltas: (M, 7)
    return: (M, 7)
    '''
    da = torch.sqrt(anchors[:, 3] ** 2 + anchors[:, 4] ** 2)
    x = deltas[:, 0] * da + anchors[:, 0]
    y = deltas[:, 1] * da + anchors[:, 1]
    z = deltas[:, 2] * anchors[:, 5] + anchors[:, 2] + anchors[:, 5] / 2

    w = anchors[:, 3] * torch.exp(deltas[:, 3])
    l = anchors[:, 4] * torch.exp(deltas[:, 4])
    h = anchors[:, 5] * torch.exp(deltas[:, 5])

    z = z - h / 2

    theta = anchors[:, 6] + deltas[:, 6]
    
    bboxes = torch.stack([x, y, z, w, l, h, theta], dim=1)
    return bboxes


def bboxes2deltas(bboxes, anchors):
    '''
    bboxes: (M, 7), (x, y, z, w, l, h, theta)
    anchors: (M, 7)
    return: (M, 7)
    '''
    da = torch.sqrt(anchors[:, 3] ** 2 + anchors[:, 4] ** 2)

    dx = (bboxes[:, 0] - anchors[:, 0]) / da
    dy = (bboxes[:, 1] - anchors[:, 1]) / da

    zb = bboxes[:, 2] + bboxes[:, 5] / 2  # bottom center
    za = anchors[:, 2] + anchors[:, 5] / 2 # bottom center
    dz = (zb - za) / anchors[:, 5] # bottom center

    dw = torch.log(bboxes[:, 3] / anchors[:, 3])
    dl = torch.log(bboxes[:, 4] / anchors[:, 4])
    dh = torch.log(bboxes[:, 5] / anchors[:, 5])
    dtheta = bboxes[:, 6] - anchors[:, 6]

    deltas = torch.stack([dx, dy, dz, dw, dl, dh, dtheta], dim=1)
    return deltas


def anchor_target(batched_anchors, batched_gt_bboxes, batched_gt_labels, assigners, nclasses):
    '''
    batched_anchors: [(y_l, x_l, 3, 2, 7), (y_l, x_l, 3, 2, 7), ... ]
    batched_gt_bboxes: [(n1, 7), (n2, 7), ...]
    batched_gt_labels: [(n1, ), (n2, ), ...]
    return: 
           dict = {batched_anchors_labels: (bs, n_anchors),
                   batched_labels_weights: (bs, n_anchors),
                   batched_anchors_reg: (bs, n_anchors, 7),
                   batched_reg_weights: (bs, n_anchors),
                   batched_anchors_dir: (bs, n_anchors),
                   batched_dir_weights: (bs, n_anchors)}
    '''
    assert len(batched_anchors) == len(batched_gt_bboxes) == len(batched_gt_labels)
    batch_size = len(batched_anchors)
    n_assigners = len(assigners)
    batched_labels, batched_label_weights = [], []
    batched_bbox_reg, batched_bbox_reg_weights = [], []
    batched_dir_labels, batched_dir_labels_weights = [], []
    for i in range(batch_size):
        anchors = batched_anchors[i]
        gt_bboxes, gt_labels = batched_gt_bboxes[i], batched_gt_labels[i]
        # what we want to get next ?
        # 1. identify positive anchors and negative anchors  -> cls
        # 2. identify the regresstion values  -> reg
        # 3. indentify the direction  -> dir_cls
        multi_labels, multi_label_weights = [], []
        multi_bbox_reg, multi_bbox_reg_weights = [], []
        multi_dir_labels, multi_dir_labels_weights = [], []
        d1, d2, d3, d4, d5 = anchors.size()
        for j in range(n_assigners): # multi anchors
            assigner = assigners[j]
            pos_iou_thr, neg_iou_thr, min_iou_thr = \
            assigner['pos_iou_thr'], assigner['neg_iou_thr'], assigner['min_iou_thr']
            cur_anchors = anchors[:, :, j, :, :].reshape(-1, 7)
            overlaps = iou2d_nearest(gt_bboxes, cur_anchors) 
            max_overlaps, max_overlaps_idx = torch.max(overlaps, dim=0)
            gt_max_overlaps, _ = torch.max(overlaps, dim=1)

            assigned_gt_inds = -torch.ones_like(cur_anchors[:, 0], dtype=torch.long)
            # a. negative anchors
            assigned_gt_inds[max_overlaps < neg_iou_thr] = 0

            # b. positive anchors
            # rule 1
            assigned_gt_inds[max_overlaps >= pos_iou_thr] = max_overlaps_idx[max_overlaps >= pos_iou_thr] + 1
            
            # rule 2
            # support one bbox to multi anchors, only if the anchors are with the highest iou.
            # rule2 may modify the labels generated by rule 1
            for i in range(len(gt_bboxes)):
                if gt_max_overlaps[i] >= min_iou_thr:
                    assigned_gt_inds[overlaps[i] == gt_max_overlaps[i]] = i + 1

            pos_flag = assigned_gt_inds > 0
            neg_flag = assigned_gt_inds == 0
            # 1. anchor labels
            assigned_gt_labels = torch.zeros_like(cur_anchors[:, 0], dtype=torch.long) + nclasses # -1 is not optimal, for some bboxes are with labels -1
            assigned_gt_labels[pos_flag] = gt_labels[assigned_gt_inds[pos_flag] - 1].long()
            assigned_gt_labels_weights = torch.zeros_like(cur_anchors[:, 0])
            assigned_gt_labels_weights[pos_flag] = 1
            assigned_gt_labels_weights[neg_flag] = 1

            # 2. anchor regression
            assigned_gt_reg_weights = torch.zeros_like(cur_anchors[:, 0])
            assigned_gt_reg_weights[pos_flag] = 1

            assigned_gt_reg = torch.zeros_like(cur_anchors)
            positive_anchors = cur_anchors[pos_flag]
            corr_gt_bboxes = gt_bboxes[assigned_gt_inds[pos_flag] - 1]
            assigned_gt_reg[pos_flag] = bboxes2deltas(corr_gt_bboxes, positive_anchors)

            # 3. anchor direction
            assigned_gt_dir_weights = torch.zeros_like(cur_anchors[:, 0])
            assigned_gt_dir_weights[pos_flag] = 1

            assigned_gt_dir = torch.zeros_like(cur_anchors[:, 0], dtype=torch.long)
            dir_cls_targets = limit_period(corr_gt_bboxes[:, 6].cpu(), 0, 2 * np.pi).to(corr_gt_bboxes)
            dir_cls_targets = torch.floor(dir_cls_targets / np.pi).long()
            assigned_gt_dir[pos_flag] = torch.clamp(dir_cls_targets, min=0, max=1)

            multi_labels.append(assigned_gt_labels.reshape(d1, d2, 1, d4))
            multi_label_weights.append(assigned_gt_labels_weights.reshape(d1, d2, 1, d4))
            multi_bbox_reg.append(assigned_gt_reg.reshape(d1, d2, 1, d4, -1))
            multi_bbox_reg_weights.append(assigned_gt_reg_weights.reshape(d1, d2, 1, d4))
            multi_dir_labels.append(assigned_gt_dir.reshape(d1, d2, 1, d4))
            multi_dir_labels_weights.append(assigned_gt_dir_weights.reshape(d1, d2, 1, d4))
        
        multi_labels = torch.cat(multi_labels, dim=-2).reshape(-1)
        multi_label_weights = torch.cat(multi_label_weights, dim=-2).reshape(-1)
        multi_bbox_reg = torch.cat(multi_bbox_reg, dim=-3).reshape(-1, d5)
        multi_bbox_reg_weights = torch.cat(multi_bbox_reg_weights, dim=-2).reshape(-1)
        multi_dir_labels = torch.cat(multi_dir_labels, dim=-2).reshape(-1)
        multi_dir_labels_weights = torch.cat(multi_dir_labels_weights, dim=-2).reshape(-1)

        batched_labels.append(multi_labels)
        batched_label_weights.append(multi_label_weights)
        batched_bbox_reg.append(multi_bbox_reg)
        batched_bbox_reg_weights.append(multi_bbox_reg_weights)
        batched_dir_labels.append(multi_dir_labels) 
        batched_dir_labels_weights.append(multi_dir_labels_weights)
    
    rt_dict = dict(
        batched_labels=torch.stack(batched_labels, 0), # (bs, y_l * x_l * 3 * 2)
        batched_label_weights=torch.stack(batched_label_weights, 0), # (bs, y_l * x_l * 3 * 2)
        batched_bbox_reg=torch.stack(batched_bbox_reg, 0), # (bs, y_l * x_l * 3 * 2, 7)
        batched_bbox_reg_weights=torch.stack(batched_bbox_reg_weights, 0), # (bs, y_l * x_l * 3 * 2)
        batched_dir_labels=torch.stack(batched_dir_labels, 0), # (bs, y_l * x_l * 3 * 2)
        batched_dir_labels_weights=torch.stack(batched_dir_labels_weights, 0) # (bs, y_l * x_l * 3 * 2)
    )

    return rt_dict