kitti.py 5.26 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
import os
import torch
from torch.utils.data import Dataset

import sys
BASE = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.dirname(BASE))

from pointpillars.utils import read_pickle, read_points, bbox_camera2lidar
from pointpillars.dataset import point_range_filter, data_augment


class BaseSampler():
    def __init__(self, sampled_list, shuffle=True):
        self.total_num = len(sampled_list)
        self.sampled_list = np.array(sampled_list)
        self.indices = np.arange(self.total_num)
        if shuffle:
            np.random.shuffle(self.indices)
        self.shuffle = shuffle
        self.idx = 0

    def sample(self, num):
        if self.idx + num < self.total_num:
            ret = self.sampled_list[self.indices[self.idx:self.idx+num]]
            self.idx += num
        else:
            ret = self.sampled_list[self.indices[self.idx:]]
            self.idx = 0
            if self.shuffle:
                np.random.shuffle(self.indices)
        return ret


class Kitti(Dataset):

    CLASSES = {
        'Pedestrian': 0, 
        'Cyclist': 1, 
        'Car': 2
        }

    def __init__(self, data_root, split, pts_prefix='velodyne_reduced'):
        assert split in ['train', 'val', 'trainval', 'test']
        self.data_root = data_root
        self.split = split
        self.pts_prefix = pts_prefix
        self.data_infos = read_pickle(os.path.join(data_root, f'kitti_infos_{split}.pkl'))
        self.sorted_ids = list(self.data_infos.keys())
        db_infos = read_pickle(os.path.join(data_root, 'kitti_dbinfos_train.pkl'))
        db_infos = self.filter_db(db_infos)

        db_sampler = {}
        for cat_name in self.CLASSES:
            db_sampler[cat_name] = BaseSampler(db_infos[cat_name], shuffle=True)
        self.data_aug_config=dict(
            db_sampler=dict(
                db_sampler=db_sampler,
                sample_groups=dict(Car=15, Pedestrian=10, Cyclist=10)
                ),
            object_noise=dict(
                num_try=100,
                translation_std=[0.25, 0.25, 0.25],
                rot_range=[-0.15707963267, 0.15707963267]
                ),
            random_flip_ratio=0.5,
            global_rot_scale_trans=dict(
                rot_range=[-0.78539816, 0.78539816],
                scale_ratio_range=[0.95, 1.05],
                translation_std=[0, 0, 0]
                ), 
            point_range_filter=[0, -39.68, -3, 69.12, 39.68, 1],
            object_range_filter=[0, -39.68, -3, 69.12, 39.68, 1]             
        )

    def remove_dont_care(self, annos_info):
        keep_ids = [i for i, name in enumerate(annos_info['name']) if name != 'DontCare']
        for k, v in annos_info.items():
            annos_info[k] = v[keep_ids]
        return annos_info

    def filter_db(self, db_infos):
        # 1. filter_by_difficulty
        for k, v in db_infos.items():
            db_infos[k] = [item for item in v if item['difficulty'] != -1]

        # 2. filter_by_min_points, dict(Car=5, Pedestrian=10, Cyclist=10)
        filter_thrs = dict(Car=5, Pedestrian=10, Cyclist=10)
        for cat in self.CLASSES:
            filter_thr = filter_thrs[cat]
            db_infos[cat] = [item for item in db_infos[cat] if item['num_points_in_gt'] >= filter_thr]
        
        return db_infos

    def __getitem__(self, index):
        data_info = self.data_infos[self.sorted_ids[index]]
        image_info, calib_info, annos_info = \
            data_info['image'], data_info['calib'], data_info['annos']
    
        # point cloud input
        velodyne_path = data_info['velodyne_path'].replace('velodyne', self.pts_prefix)
        pts_path = os.path.join(self.data_root, velodyne_path)
        pts = read_points(pts_path)
        
        # calib input: for bbox coordinates transformation between Camera and Lidar.
        # because
        tr_velo_to_cam = calib_info['Tr_velo_to_cam'].astype(np.float32)
        r0_rect = calib_info['R0_rect'].astype(np.float32)

        # annotations input
        annos_info = self.remove_dont_care(annos_info)
        annos_name = annos_info['name']
        annos_location = annos_info['location']
        annos_dimension = annos_info['dimensions']
        rotation_y = annos_info['rotation_y']
        gt_bboxes = np.concatenate([annos_location, annos_dimension, rotation_y[:, None]], axis=1).astype(np.float32)
        gt_bboxes_3d = bbox_camera2lidar(gt_bboxes, tr_velo_to_cam, r0_rect)
        gt_labels = [self.CLASSES.get(name, -1) for name in annos_name]
        data_dict = {
            'pts': pts,
            'gt_bboxes_3d': gt_bboxes_3d,
            'gt_labels': np.array(gt_labels), 
            'gt_names': annos_name,
            'difficulty': annos_info['difficulty'],
            'image_info': image_info,
            'calib_info': calib_info
        }
        if self.split in ['train', 'trainval']:
            data_dict = data_augment(self.CLASSES, self.data_root, data_dict, self.data_aug_config)
        else:
            data_dict = point_range_filter(data_dict, point_range=self.data_aug_config['point_range_filter'])

        return data_dict

    def __len__(self):
        return len(self.data_infos)
 

if __name__ == '__main__':
    
    kitti_data = Kitti(data_root='/mnt/ssd1/lifa_rdata/det/kitti', 
                       split='train')
    kitti_data.__getitem__(9)