data_aug.py 14.2 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import copy
import numba
import numpy as np
import os
import pdb
from pointpillars.utils import bbox3d2bevcorners, box_collision_test, read_points, \
    remove_pts_in_bboxes, limit_period


def dbsample(CLASSES, data_root, data_dict, db_sampler, sample_groups):
    '''
    CLASSES: dict(Pedestrian=0, Cyclist=1, Car=2)
    data_root: str, data root
    data_dict: dict(pts, gt_bboxes_3d, gt_labels, gt_names, difficulty)
    db_infos: dict(Pedestrian, Cyclist, Car, ...)
    return: data_dict
    '''
    pts, gt_bboxes_3d = data_dict['pts'], data_dict['gt_bboxes_3d']
    gt_labels, gt_names = data_dict['gt_labels'], data_dict['gt_names']
    gt_difficulty = data_dict['difficulty']
    image_info, calib_info = data_dict['image_info'], data_dict['calib_info']

    sampled_pts, sampled_names, sampled_labels = [], [], []
    sampled_bboxes, sampled_difficulty = [], []

    avoid_coll_boxes = copy.deepcopy(gt_bboxes_3d)
    for name, v in sample_groups.items():
        # 1. calculate sample numbers
        sampled_num = v - np.sum(gt_names == name)
        if sampled_num <= 0:
            continue

        # 2. sample databases bboxes
        sampled_cls_list = db_sampler[name].sample(sampled_num)
        sampled_cls_bboxes = np.array([item['box3d_lidar'] for item in sampled_cls_list], dtype=np.float32)

        # 3. box_collision_test
        avoid_coll_boxes_bv_corners = bbox3d2bevcorners(avoid_coll_boxes)
        sampled_cls_bboxes_bv_corners = bbox3d2bevcorners(sampled_cls_bboxes)
        coll_query_matrix = np.concatenate([avoid_coll_boxes_bv_corners, sampled_cls_bboxes_bv_corners], axis=0)
        coll_mat = box_collision_test(coll_query_matrix, coll_query_matrix)
        n_gt, tmp_bboxes = len(avoid_coll_boxes_bv_corners), []
        for i in range(n_gt, len(coll_mat)):
            if any(coll_mat[i]):
                coll_mat[i] = False
                coll_mat[:, i] = False
            else:
                cur_sample = sampled_cls_list[i - n_gt]
                pt_path = os.path.join(data_root, cur_sample['path'])
                sampled_pts_cur = read_points(pt_path)
                sampled_pts_cur[:, :3] += cur_sample['box3d_lidar'][:3]
                sampled_pts.append(sampled_pts_cur)
                sampled_names.append(cur_sample['name'])
                sampled_labels.append(CLASSES[cur_sample['name']])
                sampled_bboxes.append(cur_sample['box3d_lidar'])
                tmp_bboxes.append(cur_sample['box3d_lidar'])
                sampled_difficulty.append(cur_sample['difficulty'])
        if len(tmp_bboxes) == 0:
            tmp_bboxes = np.array(tmp_bboxes).reshape(-1, 7)
        else:
            tmp_bboxes = np.array(tmp_bboxes)
        avoid_coll_boxes = np.concatenate([avoid_coll_boxes, tmp_bboxes], axis=0)
        
    # merge sampled database
    # remove raw points in sampled_bboxes firstly
    pts = remove_pts_in_bboxes(pts, np.stack(sampled_bboxes, axis=0))
    # pts = np.concatenate([pts, np.concatenate(sampled_pts, axis=0)], axis=0)
    pts = np.concatenate([np.concatenate(sampled_pts, axis=0), pts], axis=0)
    gt_bboxes_3d = avoid_coll_boxes.astype(np.float32)
    gt_labels = np.concatenate([gt_labels, np.array(sampled_labels)], axis=0)
    gt_names = np.concatenate([gt_names, np.array(sampled_names)], axis=0)
    difficulty = np.concatenate([gt_difficulty, np.array(sampled_difficulty)], axis=0)
    data_dict = {
            'pts': pts,
            'gt_bboxes_3d': gt_bboxes_3d,
            'gt_labels': gt_labels, 
            'gt_names': gt_names,
            'difficulty': difficulty,
            'image_info': image_info,
            'calib_info': calib_info
        }
    return data_dict


@numba.jit(nopython=True)
def object_noise_core(pts, gt_bboxes_3d, bev_corners, trans_vec, rot_angle, rot_mat, masks):
    '''
    pts: (N, 4)
    gt_bboxes_3d: (n_bbox, 7)
    bev_corners: ((n_bbox, 4, 2))
    trans_vec: (n_bbox, num_try, 3)
    rot_mat: (n_bbox, num_try, 2, 2)
    masks: (N, n_bbox), bool
    return: gt_bboxes_3d, pts
    '''
    # 1. select the noise of num_try for each bbox under the collision test
    n_bbox, num_try = trans_vec.shape[:2]
    
    # succ_mask: (n_bbox, ), whether each bbox can be added noise successfully. -1 denotes failure.
    succ_mask = -np.ones((n_bbox, ), dtype=np.int_)
    for i in range(n_bbox):
        for j in range(num_try):
            cur_bbox = bev_corners[i] - np.expand_dims(gt_bboxes_3d[i, :2], 0) # (4, 2) - (1, 2) -> (4, 2)
            rot = np.zeros((2, 2), dtype=np.float32)
            rot[:] = rot_mat[i, j] # (2, 2)
            trans = trans_vec[i, j] # (3, )
            cur_bbox = cur_bbox @ rot
            cur_bbox += gt_bboxes_3d[i, :2]
            cur_bbox += np.expand_dims(trans[:2], 0) # (4, 2)
            coll_mat = box_collision_test(np.expand_dims(cur_bbox, 0), bev_corners)
            coll_mat[0, i] = False
            if coll_mat.any():
                continue
            else:
                bev_corners[i] = cur_bbox # update the bev_corners when adding noise succseefully.
                succ_mask[i] = j
                break
    # 2. points and bboxes noise
    visit = {}
    for i in range(n_bbox):
        jj = succ_mask[i] 
        if jj == -1:
            continue
        cur_trans, cur_angle = trans_vec[i, jj], rot_angle[i, jj]
        cur_rot_mat = np.zeros((2, 2), dtype=np.float32)
        cur_rot_mat[:] = rot_mat[i, jj]
        for k in range(len(pts)):
            if masks[k][i] and k not in visit:
                cur_pt = pts[k] # (4, )
                cur_pt_xyz = np.zeros((1, 3), dtype=np.float32)
                cur_pt_xyz[0] = cur_pt[:3] - gt_bboxes_3d[i][:3]
                tmp_cur_pt_xy = np.zeros((1, 2), dtype=np.float32)
                tmp_cur_pt_xy[:] = cur_pt_xyz[:, :2]
                cur_pt_xyz[:, :2] = tmp_cur_pt_xy @ cur_rot_mat # (1, 2)
                cur_pt_xyz[0] = cur_pt_xyz[0] + gt_bboxes_3d[i][:3]
                cur_pt_xyz[0] = cur_pt_xyz[0] + cur_trans[:3]
                cur_pt[:3] = cur_pt_xyz[0]
                visit[k] = 1

        gt_bboxes_3d[i, :3] += cur_trans[:3]
        gt_bboxes_3d[i, 6] += cur_angle

    return gt_bboxes_3d, pts


def object_noise(data_dict, num_try, translation_std, rot_range):
    '''
    data_dict: dict(pts, gt_bboxes_3d, gt_labels, gt_names, difficulty)
    num_try: int, 100
    translation_std: shape=[3, ]
    rot_range: shape=[2, ]
    return: data_dict
    '''
    pts, gt_bboxes_3d = data_dict['pts'], data_dict['gt_bboxes_3d']
    n_bbox = len(gt_bboxes_3d)
    
    # 1. generate rotation vectors and rotation matrices
    trans_vec = np.random.normal(scale=translation_std, size=(n_bbox, num_try, 3)).astype(np.float32)
    rot_angle = np.random.uniform(rot_range[0], rot_range[1], size=(n_bbox, num_try)).astype(np.float32)
    rot_cos, rot_sin = np.cos(rot_angle), np.sin(rot_angle)
    # in fact, - rot_angle
    rot_mat = np.array([[rot_cos, rot_sin], 
                        [-rot_sin, rot_cos]]) # (2, 2, n_bbox, num_try)
    rot_mat = np.transpose(rot_mat, (2, 3, 1, 0)) # (n_bbox, num_try, 2, 2)
    
    # 2. generate noise for each bbox and the points inside the bbox.
    bev_corners = bbox3d2bevcorners(gt_bboxes_3d) # (n_bbox, 4, 2) # for collision test
    masks = remove_pts_in_bboxes(pts, gt_bboxes_3d, rm=False) # identify which point should be added noise
    gt_bboxes_3d, pts = object_noise_core(pts=pts, 
                                          gt_bboxes_3d=gt_bboxes_3d, 
                                          bev_corners=bev_corners, 
                                          trans_vec=trans_vec, 
                                          rot_angle=rot_angle, 
                                          rot_mat=rot_mat, 
                                          masks=masks)
    data_dict.update({'gt_bboxes_3d': gt_bboxes_3d})
    data_dict.update({'pts': pts})

    return data_dict


def random_flip(data_dict, random_flip_ratio):
    '''
    data_dict: dict(pts, gt_bboxes_3d, gt_labels, gt_names, difficulty)
    random_flip_ratio: float, 0-1
    return: data_dict
    '''
    random_flip_state = np.random.choice([True, False], p=[random_flip_ratio, 1-random_flip_ratio])
    if random_flip_state:
        pts, gt_bboxes_3d = data_dict['pts'], data_dict['gt_bboxes_3d']
        pts[:, 1] = -pts[:, 1] 
        gt_bboxes_3d[:, 1] = -gt_bboxes_3d[:, 1]
        gt_bboxes_3d[:, 6] = -gt_bboxes_3d[:, 6] + np.pi
        data_dict.update({'gt_bboxes_3d': gt_bboxes_3d})
        data_dict.update({'pts': pts})
    return data_dict


def global_rot_scale_trans(data_dict, rot_range, scale_ratio_range, translation_std):
    '''
    data_dict: dict(pts, gt_bboxes_3d, gt_labels, gt_names, difficulty)
    rot_range: [a, b]
    scale_ratio_range: [c, d] 
    translation_std:  [e, f, g]
    return: data_dict
    '''
    pts, gt_bboxes_3d = data_dict['pts'], data_dict['gt_bboxes_3d']
    
    # 1. rotation
    rot_angle = np.random.uniform(rot_range[0], rot_range[1])
    rot_cos, rot_sin = np.cos(rot_angle), np.sin(rot_angle)
    # in fact, - rot_angle
    rot_mat = np.array([[rot_cos, rot_sin], 
                        [-rot_sin, rot_cos]]) # (2, 2)
    # 1.1 bbox rotation
    gt_bboxes_3d[:, :2] = gt_bboxes_3d[:, :2] @ rot_mat.T
    gt_bboxes_3d[:, 6] += rot_angle
    # 1.2 point rotation
    pts[:, :2] = pts[:, :2] @ rot_mat.T

    # 2. scaling
    scale_fator = np.random.uniform(scale_ratio_range[0], scale_ratio_range[1])
    gt_bboxes_3d[:, :6] *= scale_fator
    pts[:, :3] *= scale_fator

    # 3. translation
    trans_factor = np.random.normal(scale=translation_std, size=(1, 3))
    gt_bboxes_3d[:, :3] += trans_factor
    pts[:, :3] += trans_factor
    data_dict.update({'gt_bboxes_3d': gt_bboxes_3d})
    data_dict.update({'pts': pts})
    return data_dict


def point_range_filter(data_dict, point_range):
    '''
    data_dict: dict(pts, gt_bboxes_3d, gt_labels, gt_names, difficulty)
    point_range: [x1, y1, z1, x2, y2, z2]
    '''
    pts = data_dict['pts']
    flag_x_low = pts[:, 0] > point_range[0]
    flag_y_low = pts[:, 1] > point_range[1]
    flag_z_low = pts[:, 2] > point_range[2]
    flag_x_high = pts[:, 0] < point_range[3]
    flag_y_high = pts[:, 1] < point_range[4]
    flag_z_high = pts[:, 2] < point_range[5]
    keep_mask = flag_x_low & flag_y_low & flag_z_low & flag_x_high & flag_y_high & flag_z_high
    pts = pts[keep_mask]
    data_dict.update({'pts': pts})
    return data_dict 


def object_range_filter(data_dict, object_range):
    '''
    data_dict: dict(pts, gt_bboxes_3d, gt_labels, gt_names, difficulty)
    point_range: [x1, y1, z1, x2, y2, z2]
    '''
    gt_bboxes_3d, gt_labels = data_dict['gt_bboxes_3d'], data_dict['gt_labels']
    gt_names, difficulty = data_dict['gt_names'], data_dict['difficulty']

    # bev filter
    flag_x_low = gt_bboxes_3d[:, 0] > object_range[0]
    flag_y_low = gt_bboxes_3d[:, 1] > object_range[1]
    flag_x_high = gt_bboxes_3d[:, 0] < object_range[3]
    flag_y_high = gt_bboxes_3d[:, 1] < object_range[4]
    keep_mask = flag_x_low & flag_y_low & flag_x_high & flag_y_high

    gt_bboxes_3d, gt_labels = gt_bboxes_3d[keep_mask], gt_labels[keep_mask]
    gt_names, difficulty = gt_names[keep_mask], difficulty[keep_mask]
    gt_bboxes_3d[:, 6] = limit_period(gt_bboxes_3d[:, 6], 0.5, 2 * np.pi)
    data_dict.update({'gt_bboxes_3d': gt_bboxes_3d})
    data_dict.update({'gt_labels': gt_labels})
    data_dict.update({'gt_names': gt_names})
    data_dict.update({'difficulty': difficulty})
    return data_dict


def points_shuffle(data_dict):
    '''
    data_dict: dict(pts, gt_bboxes_3d, gt_labels, gt_names, difficulty)
    '''
    pts = data_dict['pts']
    indices = np.arange(0, len(pts))
    np.random.shuffle(indices)
    pts = pts[indices]
    data_dict.update({'pts': pts})
    return data_dict


def filter_bboxes_with_labels(data_dict, label=-1):
    '''
    data_dict: dict(pts, gt_bboxes_3d, gt_labels, gt_names, difficulty)
    label: int
    '''
    gt_bboxes_3d, gt_labels = data_dict['gt_bboxes_3d'], data_dict['gt_labels']
    gt_names, difficulty = data_dict['gt_names'], data_dict['difficulty']
    idx = gt_labels != label
    gt_bboxes_3d = gt_bboxes_3d[idx]
    gt_labels = gt_labels[idx]
    gt_names = gt_names[idx]
    difficulty = difficulty[idx]
    data_dict.update({'gt_bboxes_3d': gt_bboxes_3d})
    data_dict.update({'gt_labels': gt_labels})
    data_dict.update({'gt_names': gt_names})
    data_dict.update({'difficulty': difficulty})
    return data_dict


def data_augment(CLASSES, data_root, data_dict, data_aug_config):
    '''
    CLASSES: dict(Pedestrian=0, Cyclist=1, Car=2)
    data_root: str, data root
    data_dict: dict(pts, gt_bboxes_3d, gt_labels, gt_names, difficulty)
    data_aug_config: dict()
    return: data_dict
    '''

    # 1. sample databases and merge into the data 
    db_sampler_config = data_aug_config['db_sampler']
    data_dict = dbsample(CLASSES,
                         data_root,
                         data_dict, 
                         db_sampler=db_sampler_config['db_sampler'],
                         sample_groups=db_sampler_config['sample_groups'])
    # 2. object noise
    object_noise_config = data_aug_config['object_noise']
    data_dict = object_noise(data_dict, 
                             num_try=object_noise_config['num_try'],
                             translation_std=object_noise_config['translation_std'],
                             rot_range=object_noise_config['rot_range'])
    
    # 3. random flip
    random_flip_ratio = data_aug_config['random_flip_ratio']
    data_dict = random_flip(data_dict, random_flip_ratio)

    # 4. global rotation, scaling and translation
    global_rot_scale_trans_config = data_aug_config['global_rot_scale_trans']
    rot_range = global_rot_scale_trans_config['rot_range']
    scale_ratio_range = global_rot_scale_trans_config['scale_ratio_range']
    translation_std = global_rot_scale_trans_config['translation_std']
    data_dict = global_rot_scale_trans(data_dict, rot_range, scale_ratio_range, translation_std)

    # 5. points range filter
    point_range = data_aug_config['point_range_filter']
    data_dict = point_range_filter(data_dict, point_range)

    # 6. object range filter
    object_range = data_aug_config['object_range_filter']
    data_dict = object_range_filter(data_dict, object_range)

    # 7. points shuffle
    data_dict = points_shuffle(data_dict)

    # # 8. filter bboxes with label=-1
    # data_dict = filter_bboxes_with_labels(data_dict)
    
    return data_dict