VLM_caption_lightning.py 9.22 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# {'model': 'LLaVA-7B-v0', 'prompt': 'You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab.You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.Follow the instructions carefully and explain your answers in detail.###Human: Hi!###Assistant: Hi there!  How can I help you today?\n###Human: ?\n<image>###Assistant:', 'temperature': 0.2, 'max_new_tokens': 512, 'stop': '###', 'images': "List of 1 images: ['793f00027d3dc5bd69445a388a2f289c']"}
import sys
from pathlib import Path
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent))
import argparse
import torch
from transformers import AutoTokenizer, CLIPImageProcessor, CLIPVisionModel, AutoConfig
from diffusion.model.llava import LlavaMPTForCausalLM
from PIL import Image
from tqdm import tqdm
from os import path, makedirs
from torch.utils.data import Dataset, DataLoader
import json

import pathlib


DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"


# only fixed for py < 3.9
def remove_suffix(input_string, suffix):
    if suffix and input_string.endswith(suffix):
        return input_string[:-len(suffix)]
    return input_string


def expand2square(pil_img, background_color=(122, 116, 104)):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result


def pad2square(image):
    max_hw, min_hw = max(image.size), min(image.size)
    aspect_ratio = max_hw / min_hw
    max_len, min_len = 800, 400
    shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
    longest_edge = int(shortest_edge * aspect_ratio)
    W, H = image.size
    if H > W:
        H, W = longest_edge, shortest_edge
    else:
        H, W = shortest_edge, longest_edge
    image = image.resize((W, H))
    return image


def load_model(model_path):
    tokenizer = AutoTokenizer.from_pretrained(model_path)
    model = LlavaMPTForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)

    mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
    tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
    if mm_use_im_start_end:
        tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)

    vision_tower = model.get_model().vision_tower[0]
    if vision_tower.device.type == 'meta':
        vision_tower = CLIPVisionModel.from_pretrained(
            vision_tower.config._name_or_path, torch_dtype=torch.float16, low_cpu_mem_usage=True).cuda()
        model.get_model().vision_tower[0] = vision_tower
    else:
        vision_tower.to(device='cuda', dtype=torch.float16)
    vision_config = vision_tower.config
    vision_config.im_patch_token = tokenizer.convert_tokens_to_ids(
        [DEFAULT_IMAGE_PATCH_TOKEN])[0]
    vision_config.use_im_start_end = mm_use_im_start_end
    if mm_use_im_start_end:
        vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids(
            [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])

    model.cuda()

    if hasattr(model.config, "max_sequence_length"):
        context_len = model.config.max_sequence_length
    else:
        context_len = 2048

    return tokenizer, model, context_len


class SanitizedLaion(Dataset):
    def __init__(self, root_dir, index_file, prompt, config, img_extension='.jpg', caption=True) -> None:
        super().__init__()
        self.root_dir = root_dir
        self.image_processor = CLIPImageProcessor.from_pretrained(AutoConfig.from_pretrained(config).mm_vision_tower, torch_dtype=torch.float16)
        self.prompt = prompt
        self.img_extension = img_extension
        self.caption=caption

        if '.txt' in index_file:
            with open(index_file, 'r') as f:
                self.lines = f.readlines()
        elif '.json' in index_file:
            with open(index_file, 'r') as f:
                self.lines = json.load(f)
        else:
            raise ValueError(f'{index_file} format not supported')

    def __len__(self):
        return len(self.lines)

    def __getitem__(self, idx):
        item = self.lines[idx]
        caption = item['prompt'].strip()
        prompt = self.prompt.format(caption) if self.caption else self.prompt
        with open(path.join(self.root_dir, item['path']), 'rb') as f:
            img = pad2square(Image.open(f).convert('RGB'))
        return self.image_processor(img, return_tensors='pt')['pixel_values'].squeeze(), prompt, item['path'].split(self.img_extension)[0]


@torch.no_grad()
def caption(tokenizer, model, context_len, images, prompt, prefix):
    images = images.to(model.device, dtype=torch.float16)
    # HACK: 256 is the max image token length hacked
    replace_token = DEFAULT_IMAGE_PATCH_TOKEN * 256
    if getattr(model.config, 'mm_use_im_start_end', False):
        replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN

    prompt = list(map(lambda p: p.replace(DEFAULT_IMAGE_TOKEN, replace_token), prompt))

    temperature = 0.2
    max_new_tokens = 1024
    stop_str = '<|im_end|>'

    max_src_len = context_len - max_new_tokens - 8
    input_ids = tokenizer(prompt).input_ids
    input_ids = list(map(lambda input_id: input_id[-max_src_len:], input_ids))
    lens = list(map(lambda x: len(x), input_ids))
    longest = max(lens)
    input_ids = list(map(lambda x: x if len(x) == longest else [tokenizer.pad_token_id] * (longest - len(x)) + x, input_ids))

    pred_ids = torch.zeros([images.shape[0], 0], device=model.device, dtype=torch.long)
    past_key_values = None
    finish = [False] * images.shape[0]
    for i in tqdm(range(max_new_tokens), leave=False):
        if i == 0:
            out = model(
                torch.as_tensor(input_ids).cuda(),
                use_cache=True,
                images=images)
            del images
        else:
            attention_mask = torch.ones(1, past_key_values[0][0].shape[-2] + 1, device="cuda")
            out = model(input_ids=token,
                        use_cache=True,
                        attention_mask=attention_mask,
                        past_key_values=past_key_values)
        past_key_values = out.past_key_values
        logits = out.logits
        last_token_logits = logits[:, -1]
        if temperature < 1e-4:
            token = torch.argmax(last_token_logits)
        else:
            probs = torch.softmax(last_token_logits / temperature, dim=-1)
            token = torch.multinomial(probs, num_samples=1)

        pred_ids = torch.concatenate([pred_ids, token], dim=1)

        for ii in torch.nonzero(token.cpu() == tokenizer.eos_token_id, as_tuple=True)[0]:
            if finish[ii]:
                continue
            ii = int(ii)
            # output = tokenizer.decode(pred_ids[ii][:-1]).removesuffix(stop_str)
            output = remove_suffix(tokenizer.decode(pred_ids[ii][:-1]), stop_str)
            finish[ii] = True
            yield output, prefix[ii]

        if all(finish):
            break



if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="liuhaotian/LLaVA-Lightning-MPT-7B-preview")
    parser.add_argument("--data-root", type=str, required=True)
    parser.add_argument('--index', type=str, required=True)
    parser.add_argument('--output', type=str, required=True)
    args = parser.parse_args()

    prompt = """<|im_start|>system
    - You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab.
    - You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.
    - You should follow the instructions carefully and explain your answers in detail.<|im_end|><|im_start|>user
    Given the caption of this image "{}", describe this image in a very detailed manner
    <image><|im_end|><|im_start|>assistant\n"""

    prompt_nocap = """<|im_start|>system
    - You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab.
    - You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.
    - You should follow the instructions carefully and explain your answers in detail.<|im_end|><|im_start|>user
    Describe this image in a very detailed manner
    <image><|im_end|><|im_start|>assistant\n"""
    d = SanitizedLaion(args.data_root, args.index, prompt, args.model_path, img_extension='.png')
    l = DataLoader(d, batch_size=32, pin_memory=True, num_workers=10)

    tokenizer, model, context_len = load_model(args.model_path)
    # model = torch.compile(model)
    for b in tqdm(l):
        for c, p in caption(tokenizer, model, context_len, *b):
            o = path.join(args.output, f'{p}.txt')
            makedirs(path.dirname(o), exist_ok=True, mode=0o755)
            with open(o, 'w') as k:
                k.write(c)