interface_controlnet.py 9.68 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
import os
from datetime import datetime
import numpy as np
import sys
from pathlib import Path
from typing import List, Union

current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent))

import gradio as gr
from gradio.components import Textbox, Image, Slider
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from torchvision.utils import _log_api_usage_once, make_grid, save_image

from diffusion import IDDPM, DPMS, SASolverSampler
from diffusion.data.datasets import *
from diffusion.model.hed import HEDdetector
from diffusion.model.nets import PixArtMS_XL_2, ControlPixArtHalf, ControlPixArtMSHalf
from diffusion.model.t5 import T5Embedder
from diffusion.model.utils import prepare_prompt_ar, resize_and_crop_tensor
from diffusion.utils.misc import read_config
from diffusers.models import AutoencoderKL
from tools.download import find_model

vae_scale = 0.18215

DESCRIPTION = """![Logo](https://raw.githubusercontent.com/PixArt-alpha/PixArt-alpha.github.io/master/static/images/logo.png)
        # PixArt-Alpha 1024px + ControlNet. This is the demo for ControlNet combined with 1024px PixArt-Alpha.
        # The input reference image need to be around 1024x1024. And descriptive prompts also need to be provided.
        # You may change the random seed, if you didn't get satisfied results.
        """


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("config", type=str, help="config")
    parser.add_argument('--num_sampling_steps', default=14, type=int)
    parser.add_argument('--cfg_scale', default=4.5, type=int)
    parser.add_argument('--image_size', default=1024, type=int)
    parser.add_argument('--model_path', type=str)
    parser.add_argument('--tokenizer_path', default='output/pretrained_models/sd-vae-ft-ema', type=str)

    parser.add_argument('--llm_model', default='t5', type=str)

    parser.add_argument('--sampling_algo', default='dpm-solver', type=str, choices=['iddpm', 'dpm-solver', 'sa-solver'])

    parser.add_argument('--port', default=7788, type=int)
    parser.add_argument('--condition_strength', default=1, type=float)

    return parser.parse_args()


@torch.no_grad()
def ndarr_image(tensor: Union[torch.Tensor, List[torch.Tensor]], **kwargs, ) -> None:
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(save_image)
    grid = make_grid(tensor, **kwargs)
    ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
    return ndarr


def set_env():
    torch.manual_seed(0)
    torch.set_grad_enabled(False)


@torch.inference_mode()
def generate_img(prompt, given_image, seed):
    torch.manual_seed(seed)
    torch.cuda.empty_cache()
    strength = 1.0
    c_vis = given_image

    save_promt_path = f'{save_prompt_path}/tested_prompts{datetime.now().date()}.txt'
    with open(save_promt_path, 'a') as f:
        f.write(prompt + '\n')
    prompt_clean, prompt_show, hw, ar, custom_hw = prepare_prompt_ar(prompt, base_ratios, device=device)  # ar for aspect ratio
    prompt_clean = prompt_clean.strip()
    if isinstance(prompt_clean, str):
        prompts = [prompt_clean]

    caption_embs, emb_masks = llm_embed_model.get_text_embeddings(prompts)
    caption_embs = caption_embs[:, None]

    null_y = model.y_embedder.y_embedding[None].repeat(len(prompts), 1, 1)[:, None]

    # condition process
    if given_image is not None:
        ar = torch.tensor([given_image.size[1] / given_image.size[0]], device=device)[None]
        custom_hw = torch.tensor([given_image.size[1], given_image.size[0]], device=device)[None]
        closest_hw = base_ratios[min(base_ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))]
        hw = torch.tensor(closest_hw, device=device)[None]
        condition_transform = T.Compose([
            T.Lambda(lambda img: img.convert('RGB')),
            T.Resize(int(min(closest_hw))),
            T.CenterCrop([int(closest_hw[0]), int(closest_hw[1])]),
            T.ToTensor(),
        ])

        given_image = condition_transform(given_image).unsqueeze(0).to(device)
        hed_edge = hed(given_image) * strength
        hed_edge = TF.normalize(hed_edge, [.5], [.5])
        hed_edge = hed_edge.repeat(1, 3, 1, 1)
        posterior = vae.encode(hed_edge).latent_dist
        condition = posterior.sample()
        c = condition * vae_scale
        c_vis = vae.decode(condition)['sample']
        c_vis = torch.clamp(127.5 * c_vis + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()[0]
    else:
        c = None

    latent_size_h, latent_size_w = int(hw[0, 0] // 8), int(hw[0, 1] // 8)
    # Sample images:
    if args.sampling_algo == 'iddpm':
        # Create sampling noise:
        n = len(prompts)
        z = torch.randn(n, 4, latent_size, latent_size, device=device).repeat(2, 1, 1, 1)
        model_kwargs = dict(y=torch.cat([caption_embs, null_y]), cfg_scale=args.cfg_scale,
                            data_info={'img_hw': hw, 'aspect_ratio': ar},
                            mask=emb_masks, c=c)
        diffusion = IDDPM(str(args.num_sampling_steps))
        samples = diffusion.p_sample_loop(
            model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True,
            device=device
        )
        samples, _ = samples.chunk(2, dim=0)  # Remove null class samples
    elif args.sampling_algo == 'dpm-solver':
        # Create sampling noise:
        n = len(prompts)
        z = torch.randn(n, 4, latent_size_h, latent_size_w, device=device)
        model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks, c=c)
        dpm_solver = DPMS(model.forward_with_dpmsolver,
                          condition=caption_embs,
                          uncondition=null_y,
                          cfg_scale=args.cfg_scale,
                          model_kwargs=model_kwargs)
        samples = dpm_solver.sample(
            z,
            steps=args.num_sampling_steps,
            order=2,
            skip_type="time_uniform",
            method="multistep",
        )

    elif args.sampling_algo == 'sa-solver':
        # Create sampling noise:
        n = len(prompts)
        model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks, c=c)
        sas_solver = SASolverSampler(model.forward_with_dpmsolver, device=device)
        samples = sas_solver.sample(
            S=args.num_sampling_steps,
            batch_size=n,
            shape=(4, latent_size_h, latent_size_w),
            eta=1,
            conditioning=caption_embs,
            unconditional_conditioning=null_y,
            unconditional_guidance_scale=args.cfg_scale,
            model_kwargs=model_kwargs,
        )[0]

    samples = vae.decode(samples / vae_scale).sample
    torch.cuda.empty_cache()
    samples = resize_and_crop_tensor(samples, custom_hw[0, 1], custom_hw[0, 0])

    return ndarr_image(samples, normalize=True, value_range=(-1, 1)), c_vis, prompt_show


if __name__ == '__main__':
    args = get_args()
    config = read_config(args.config)
    set_env()
    device = "cuda" if torch.cuda.is_available() else "cpu"
    save_prompt_path = 'output/demo/online_demo_prompts/'
    os.makedirs(save_prompt_path, exist_ok=True)

    assert args.image_size in [512, 1024], "We only provide pre-trained models for 512x512 and 1024x1024 resolutions."
    lewei_scale = {512: 1, 1024: 2}
    latent_size = args.image_size // 8
    weight_dtype = torch.float16
    print(f"Inference with {weight_dtype}")

    model = PixArtMS_XL_2(input_size=latent_size, lewei_scale=lewei_scale[args.image_size])
    if config.image_size == 512:
        print('model architecture ControlPixArtHalf and image size is 512')
        model = ControlPixArtHalf(model).to(device)
    elif config.image_size == 1024:
        print('model architecture ControlPixArtMSHalf and image size is 1024')
        model = ControlPixArtMSHalf(model).to(device)

    state_dict = find_model(args.model_path)['state_dict']
    if 'pos_embed' in state_dict:
        del state_dict['pos_embed']
    elif 'base_model.pos_embed' in state_dict:
        del state_dict['base_model.pos_embed']
    missing, unexpected = model.load_state_dict(state_dict, strict=False)
    print('Missing keys (missing pos_embed is normal): ', missing)
    print('Unexpected keys', unexpected)
    model.eval()
    model.to(weight_dtype)
    display_model_info = f'model path: {args.model_path},\n base image size: {args.image_size}'
    base_ratios = eval(f'ASPECT_RATIO_{args.image_size}_TEST')

    vae = AutoencoderKL.from_pretrained(args.tokenizer_path).to(device)
    hed = HEDdetector(False).to(device)

    if args.llm_model == 't5':
        print("begin load t5")
        llm_embed_model = T5Embedder(device=device, local_cache=True, cache_dir='data/t5_ckpts', torch_dtype=torch.float)
        print("finish load t5")
    else:
        print(f'We support t5 only, please initialize the llm again')
        sys.exit()

    gr.Markdown(DESCRIPTION)
    demo = gr.Interface(fn=generate_img,
                        inputs=[
                            Textbox(label="Enter a reference image, the resolution of image need around 1024 x 1024",
                                    placeholder="Please enter your prompt. \n"),
                            Image(type="pil", label="Condition"),
                            Slider(minimum=0., maximum=10000., value=0, step=2, label='seed'),
                            ],
                        outputs=[Image(type="numpy", label="Img"),
                                 Image(type="numpy", label="HED Edge Map"),
                                 Textbox(label="clean prompt"),]
                        )
    demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=args.port, debug=True)