train.py 5.74 KB
Newer Older
yongshk's avatar
yongshk committed
1
2
3
4
5
6
7
import time
import os
import numpy as np
import torch
from torch.autograd import Variable
from collections import OrderedDict
from subprocess import call
yongshk's avatar
update  
yongshk committed
8
9
10
11
12
# python版本变化修正
# import fractions
# def lcm(a,b): return abs(a * b)/fractions.gcd(a,b) if a and b else 0
import math
def lcm(a,b): return abs(a * b)/math.gcd(a,b) if a and b else 0
yongshk's avatar
yongshk committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer

opt = TrainOptions().parse()
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
if opt.continue_train:
    try:
        start_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int)
    except:
        start_epoch, epoch_iter = 1, 0
    print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter))        
else:    
    start_epoch, epoch_iter = 1, 0

opt.print_freq = lcm(opt.print_freq, opt.batchSize)    
if opt.debug:
    opt.display_freq = 1
    opt.print_freq = 1
    opt.niter = 1
    opt.niter_decay = 0
    opt.max_dataset_size = 10

data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)

model = create_model(opt)
visualizer = Visualizer(opt)
if opt.fp16:    
    from apex import amp
    model, [optimizer_G, optimizer_D] = amp.initialize(model, [model.optimizer_G, model.optimizer_D], opt_level='O1')             
    model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids)
else:
    optimizer_G, optimizer_D = model.module.optimizer_G, model.module.optimizer_D

total_steps = (start_epoch-1) * dataset_size + epoch_iter

display_delta = total_steps % opt.display_freq
print_delta = total_steps % opt.print_freq
save_delta = total_steps % opt.save_latest_freq

for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
    epoch_start_time = time.time()
    if epoch != start_epoch:
        epoch_iter = epoch_iter % dataset_size
    for i, data in enumerate(dataset, start=epoch_iter):
        if total_steps % opt.print_freq == print_delta:
            iter_start_time = time.time()
        total_steps += opt.batchSize
        epoch_iter += opt.batchSize

        # whether to collect output images
        save_fake = total_steps % opt.display_freq == display_delta

        ############## Forward Pass ######################
        losses, generated = model(Variable(data['label']), Variable(data['inst']), 
            Variable(data['image']), Variable(data['feat']), infer=save_fake)

        # sum per device losses
        losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ]
        loss_dict = dict(zip(model.module.loss_names, losses))

        # calculate final loss scalar
        loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5
        loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0)

        ############### Backward Pass ####################
        # update generator weights
        optimizer_G.zero_grad()
        if opt.fp16:                                
            with amp.scale_loss(loss_G, optimizer_G) as scaled_loss: scaled_loss.backward()                
        else:
            loss_G.backward()          
        optimizer_G.step()

        # update discriminator weights
        optimizer_D.zero_grad()
        if opt.fp16:                                
            with amp.scale_loss(loss_D, optimizer_D) as scaled_loss: scaled_loss.backward()                
        else:
            loss_D.backward()        
        optimizer_D.step()        

        ############## Display results and errors ##########
        ### print out errors
        if total_steps % opt.print_freq == print_delta:
            errors = {k: v.data.item() if not isinstance(v, int) else v for k, v in loss_dict.items()}            
            t = (time.time() - iter_start_time) / opt.print_freq
            visualizer.print_current_errors(epoch, epoch_iter, errors, t)
            visualizer.plot_current_errors(errors, total_steps)
            #call(["nvidia-smi", "--format=csv", "--query-gpu=memory.used,memory.free"]) 

        ### display output images
        if save_fake:
            visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)),
                                   ('synthesized_image', util.tensor2im(generated.data[0])),
                                   ('real_image', util.tensor2im(data['image'][0]))])
            visualizer.display_current_results(visuals, epoch, total_steps)

        ### save latest model
        if total_steps % opt.save_latest_freq == save_delta:
            print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps))
            model.module.save('latest')            
            np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d')

        if epoch_iter >= dataset_size:
            break
       
    # end of epoch 
    iter_end_time = time.time()
    print('End of epoch %d / %d \t Time Taken: %d sec' %
          (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))

    ### save model for this epoch
    if epoch % opt.save_epoch_freq == 0:
        print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))        
        model.module.save('latest')
        model.module.save(epoch)
        np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d')

    ### instead of only training the local enhancer, train the entire network after certain iterations
    if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global):
        model.module.update_fixed_params()

    ### linearly decay learning rate after certain iterations
    if epoch > opt.niter:
        model.module.update_learning_rate()