"docs/en_US/TrainingService/KubeflowMode.rst" did not exist on "abc221589c65d75b494407c60a81ca87c3020463"
convert_qg_datasets.py 4.63 KB
Newer Older
mashun's avatar
mashun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import numpy as np
import awkward as ak
import argparse


'''
Datasets introduction:
https://energyflow.network/docs/datasets/#quark-and-gluon-jets

Download:
- Pythia8 Quark and Gluon Jets for Energy Flow:
  - https://zenodo.org/record/3164691

- Herwig7.1 Quark and Gluon Jets:
  - https://zenodo.org/record/3066475

Versions:
 - awkward==2.6.4
 - vector==1.4.0
'''


def _p4_from_ptetaphim(pt, eta, phi, mass):
    import vector
    vector.register_awkward()
    return vector.zip({'pt': pt, 'eta': eta, 'phi': phi, 'mass': mass})


def _transform(X, y, start=0, stop=-1):
    # source_array: (num_data, max_num_particles, 4)
    # (pt,y,phi,pid)

    X = X[start:stop].astype(np.float32)
    y = y[start:stop]

    origPT = X[:, :, 0]
    indices = np.argsort(-origPT, axis=1)

    _pt = np.take_along_axis(X[:, :, 0], indices, axis=1)
    _eta = np.take_along_axis(X[:, :, 1], indices, axis=1)
    _phi = np.take_along_axis(X[:, :, 2], indices, axis=1)
    _pid = np.take_along_axis(X[:, :, 3], indices, axis=1)

    mask = _pt > 0
    n_particles = np.sum(mask, axis=1)

    pt = ak.unflatten(_pt[mask], n_particles)
    eta = ak.unflatten(_eta[mask], n_particles)
    phi = ak.unflatten(_phi[mask], n_particles)
    mass = ak.zeros_like(pt)
    PID = ak.unflatten(_pid[mask], n_particles)

    p4 = _p4_from_ptetaphim(pt, eta, phi, mass)
    px = p4.x
    py = p4.y
    pz = p4.z
    energy = p4.energy

    jet_p4 = ak.sum(p4, axis=1)

    # outputs
    v = {}
    v['label'] = y

    v['jet_pt'] = jet_p4.pt
    v['jet_eta'] = jet_p4.eta
    v['jet_phi'] = jet_p4.phi
    v['jet_energy'] = jet_p4.energy
    v['jet_mass'] = jet_p4.mass
    v['jet_nparticles'] = n_particles

    v['part_px'] = px
    v['part_py'] = py
    v['part_pz'] = pz
    v['part_energy'] = energy

    _jet_etasign = ak.to_numpy(np.sign(v['jet_eta']))
    _jet_etasign[_jet_etasign == 0] = 1
    v['part_deta'] = (p4.eta - v['jet_eta']) * _jet_etasign
    v['part_dphi'] = p4.deltaphi(jet_p4)

    v['part_pid'] = PID
    v['part_isCHPlus'] = ak.values_astype((PID == 211) + (PID == 321) + (PID == 2212), 'float32')
    v['part_isCHMinus'] = ak.values_astype((PID == -211) + (PID == -321) + (PID == -2212), 'float32')
    v['part_isNeutralHadron'] = ak.values_astype((PID == 130) + (PID == 2112) + (PID == -2112), 'float32')
    v['part_isPhoton'] = ak.values_astype(PID == 22, 'float32')
    v['part_isEPlus'] = ak.values_astype(PID == -11, 'float32')
    v['part_isEMinus'] = ak.values_astype(PID == 11, 'float32')
    v['part_isMuPlus'] = ak.values_astype(PID == -13, 'float32')
    v['part_isMuMinus'] = ak.values_astype(PID == 13, 'float32')

    v['part_isChargedHadron'] = v['part_isCHPlus'] + v['part_isCHMinus']
    v['part_isElectron'] = v['part_isEPlus'] + v['part_isEMinus']
    v['part_isMuon'] = v['part_isMuPlus'] + v['part_isMuMinus']

    v['part_charge'] = (v['part_isCHPlus'] + v['part_isEPlus'] + v['part_isMuPlus']
                        ) - (v['part_isCHMinus'] + v['part_isEMinus'] + v['part_isMuMinus'])

    for k in list(v.keys()):
        if k.endswith('Plus') or k.endswith('Minus'):
            del v[k]

    return v


def convert(sources, destdir, basename):
    if not os.path.exists(destdir):
        os.makedirs(destdir)

    for idx, sourcefile in enumerate(sources):
        npfile = np.load(sourcefile)
        output = os.path.join(destdir, '%s_%d.parquet' % (basename, idx))
        print(sourcefile)
        print(str(npfile['X'].shape))
        print(output)
        if os.path.exists(output):
            os.remove(output)
        v = _transform(npfile['X'], npfile['y'])
        arr = ak.Array(v)
        ak.to_parquet(arr, output, compression='LZ4', compression_level=4)


def natural_sort(l):
    import re
    def convert(text): return int(text) if text.isdigit() else text.lower()
    def alphanum_key(key): return [convert(c) for c in re.split('([0-9]+)', key)]
    return sorted(l, key=alphanum_key)


if __name__ == '__main__':

    parser = argparse.ArgumentParser('Convert qg benchmark datasets')
    parser.add_argument('-i', '--inputdir', required=True, help='Directory of input numpy files.')
    parser.add_argument('-o', '--outputdir', required=True, help='Output directory.')
    parser.add_argument('--train-test-split', default=0.9, help='Training / testing split fraction.')
    args = parser.parse_args()

    import glob
    sources = natural_sort(glob.glob(os.path.join(args.inputdir, 'QG_jets*.npz')))
    n_train = int(args.train_test_split * len(sources))
    train_sources = sources[:n_train]
    test_sources = sources[n_train:]

    convert(train_sources, destdir=args.outputdir, basename='train_file')
    convert(test_sources, destdir=args.outputdir, basename='test_file')