README_zh.md 21.2 KB
Newer Older
wangwei990215's avatar
wangwei990215 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
(简体中文|[English](./README.md))

FunASR开源了大量在工业数据上预训练模型,您可以在 [模型许可协议](https://github.com/alibaba-damo-academy/FunASR/blob/main/MODEL_LICENSE)下自由使用、复制、修改和分享FunASR模型,下面列举代表性的模型,更多模型请参考 [模型仓库](https://github.com/alibaba-damo-academy/FunASR/tree/main/model_zoo)

<div align="center">  
<h4>
 <a href="#模型推理"> 模型推理 </a>   
<a href="#模型训练与测试"> 模型训练与测试 </a>
<a href="#模型导出与测试"> 模型导出与测试 </a>
</h4>
</div>

<a name="模型推理"></a>
## 模型推理

### 快速使用

命令行方式调用:
```shell
funasr ++model=paraformer-zh ++vad_model="fsmn-vad" ++punc_model="ct-punc" ++input=asr_example_zh.wav
```

python代码调用(推荐)

```python
from funasr import AutoModel

model = AutoModel(model="paraformer-zh")

res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav")
print(res)
```

### 接口说明

#### AutoModel 定义
```python
model = AutoModel(model=[str], device=[str], ncpu=[int], output_dir=[str], batch_size=[int], hub=[str], **kwargs)
```
- `model`(str): [模型仓库](https://github.com/alibaba-damo-academy/FunASR/tree/main/model_zoo) 中的模型名称,或本地磁盘中的模型路径
- `device`(str): `cuda:0`(默认gpu0),使用 GPU 进行推理,指定。如果为`cpu`,则使用 CPU 进行推理
- `ncpu`(int): `4` (默认),设置用于 CPU 内部操作并行性的线程数
- `output_dir`(str): `None` (默认),如果设置,输出结果的输出路径
- `batch_size`(int): `1` (默认),解码时的批处理,样本个数
- `hub`(str):`ms`(默认),从modelscope下载模型。如果为`hf`,从huggingface下载模型。
- `**kwargs`(dict): 所有在`config.yaml`中参数,均可以直接在此处指定,例如,vad模型中最大切割长度 `max_single_segment_time=6000` (毫秒)。

#### AutoModel 推理
```python
res = model.generate(input=[str], output_dir=[str])
```
- `input`: 要解码的输入,可以是:
  - wav文件路径, 例如: asr_example.wav
  - pcm文件路径, 例如: asr_example.pcm,此时需要指定音频采样率fs(默认为16000)
  - 音频字节数流,例如:麦克风的字节数数据
  - wav.scp,kaldi 样式的 wav 列表 (`wav_id \t wav_path`), 例如:
  ```text
  asr_example1  ./audios/asr_example1.wav
  asr_example2  ./audios/asr_example2.wav
  ```
  在这种输入 `wav.scp` 的情况下,必须设置 `output_dir` 以保存输出结果
  - 音频采样点,例如:`audio, rate = soundfile.read("asr_example_zh.wav")`, 数据类型为 numpy.ndarray。支持batch输入,类型为list:
  ```[audio_sample1, audio_sample2, ..., audio_sampleN]```
  - fbank输入,支持组batch。shape为[batch, frames, dim],类型为torch.Tensor,例如
- `output_dir`: None (默认),如果设置,输出结果的输出路径
- `**kwargs`(dict): 与模型相关的推理参数,例如,`beam_size=10`,`decoding_ctc_weight=0.1`。


### 更多用法介绍


#### 非实时语音识别
##### SenseVoice
```python
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess

model_dir = "iic/SenseVoiceSmall"

model = AutoModel(
    model=model_dir,
    vad_model="fsmn-vad",
    vad_kwargs={"max_single_segment_time": 30000},
    device="cuda:0",
)

# en
res = model.generate(
    input=f"{model.model_path}/example/en.mp3",
    cache={},
    language="auto",  # "zn", "en", "yue", "ja", "ko", "nospeech"
    use_itn=True,
    batch_size_s=60,
    merge_vad=True,  #
    merge_length_s=15,
)
text = rich_transcription_postprocess(res[0]["text"])
print(text)
```
参数说明:
- `model_dir`:模型名称,或本地磁盘中的模型路径。
- `vad_model`:表示开启VAD,VAD的作用是将长音频切割成短音频,此时推理耗时包括了VAD与SenseVoice总耗时,为链路耗时,如果需要单独测试SenseVoice模型耗时,可以关闭VAD模型。
- `vad_kwargs`:表示VAD模型配置,`max_single_segment_time`: 表示`vad_model`最大切割音频时长, 单位是毫秒ms。
- `use_itn`:输出结果中是否包含标点与逆文本正则化。
- `batch_size_s` 表示采用动态batch,batch中总音频时长,单位为秒s。
- `merge_vad`:是否将 vad 模型切割的短音频碎片合成,合并后长度为`merge_length_s`,单位为秒s。
- `ban_emo_unk`:禁用emo_unk标签,禁用后所有的句子都会被赋与情感标签。

##### Paraformer
```python
from funasr import AutoModel
# paraformer-zh is a multi-functional asr model
# use vad, punc, spk or not as you need
model = AutoModel(model="paraformer-zh",  
                  vad_model="fsmn-vad", 
                  vad_kwargs={"max_single_segment_time": 60000},
                  punc_model="ct-punc", 
                  # spk_model="cam++"
                  )
wav_file = f"{model.model_path}/example/asr_example.wav"
res = model.generate(input=wav_file, batch_size_s=300, batch_size_threshold_s=60, hotword='魔搭')
print(res)
```
注意:
- 通常模型输入限制时长30s以下,组合`vad_model`后,支持任意时长音频输入,不局限于paraformer模型,所有音频输入模型均可以。
- `model`相关的参数可以直接在`AutoModel`定义中直接指定;与`vad_model`相关参数可以通过`vad_kwargs`来指定,类型为dict;类似的有`punc_kwargs`,`spk_kwargs`;
- `max_single_segment_time`: 表示`vad_model`最大切割音频时长, 单位是毫秒ms.
- `batch_size_s` 表示采用动态batch,batch中总音频时长,单位为秒s。
- `batch_size_threshold_s`: 表示`vad_model`切割后音频片段时长超过 `batch_size_threshold_s`阈值时,将batch_size数设置为1, 单位为秒s.

建议:当您输入为长音频,遇到OOM问题时,因为显存占用与音频时长呈平方关系增加,分为3种情况:
- a)推理起始阶段,显存主要取决于`batch_size_s`,适当减小该值,可以减少显存占用;
- b)推理中间阶段,遇到VAD切割的长音频片段,总token数小于`batch_size_s`,仍然出现OOM,可以适当减小`batch_size_threshold_s`,超过阈值,强制batch为1; 
- c)推理快结束阶段,遇到VAD切割的长音频片段,总token数小于`batch_size_s`,且超过阈值`batch_size_threshold_s`,强制batch为1,仍然出现OOM,可以适当减小`max_single_segment_time`,使得VAD切割音频时长变短。

#### 实时语音识别

```python
from funasr import AutoModel

chunk_size = [0, 10, 5] #[0, 10, 5] 600ms, [0, 8, 4] 480ms
encoder_chunk_look_back = 4 #number of chunks to lookback for encoder self-attention
decoder_chunk_look_back = 1 #number of encoder chunks to lookback for decoder cross-attention

model = AutoModel(model="paraformer-zh-streaming")

import soundfile
import os

wav_file = os.path.join(model.model_path, "example/asr_example.wav")
speech, sample_rate = soundfile.read(wav_file)
chunk_stride = chunk_size[1] * 960 # 600ms

cache = {}
total_chunk_num = int(len((speech)-1)/chunk_stride+1)
for i in range(total_chunk_num):
    speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
    is_final = i == total_chunk_num - 1
    res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back)
    print(res)
```

注:`chunk_size`为流式延时配置,`[0,10,5]`表示上屏实时出字粒度为`10*60=600ms`,未来信息为`5*60=300ms`。每次推理输入为`600ms`(采样点数为`16000*0.6=960`),输出为对应文字,最后一个语音片段输入需要设置`is_final=True`来强制输出最后一个字。

#### 语音端点检测(非实时)
```python
from funasr import AutoModel

model = AutoModel(model="fsmn-vad")

wav_file = f"{model.model_path}/example/vad_example.wav"
res = model.generate(input=wav_file)
print(res)
```
注:VAD模型输出格式为:`[[beg1, end1], [beg2, end2], .., [begN, endN]]`,其中`begN/endN`表示第`N`个有效音频片段的起始点/结束点,
单位为毫秒。

#### 语音端点检测(实时)
```python
from funasr import AutoModel

chunk_size = 200 # ms
model = AutoModel(model="fsmn-vad")

import soundfile

wav_file = f"{model.model_path}/example/vad_example.wav"
speech, sample_rate = soundfile.read(wav_file)
chunk_stride = int(chunk_size * sample_rate / 1000)

cache = {}
total_chunk_num = int(len((speech)-1)/chunk_stride+1)
for i in range(total_chunk_num):
    speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
    is_final = i == total_chunk_num - 1
    res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size)
    if len(res[0]["value"]):
        print(res)
```
注:流式VAD模型输出格式为4种情况:
- `[[beg1, end1], [beg2, end2], .., [begN, endN]]`:同上离线VAD输出结果。
- `[[beg, -1]]`:表示只检测到起始点。
- `[[-1, end]]`:表示只检测到结束点。
- `[]`:表示既没有检测到起始点,也没有检测到结束点
输出结果单位为毫秒,从起始点开始的绝对时间。

#### 标点恢复
```python
from funasr import AutoModel

model = AutoModel(model="ct-punc")

res = model.generate(input="那今天的会就到这里吧 happy new year 明年见")
print(res)
```

#### 时间戳预测
```python
from funasr import AutoModel

model = AutoModel(model="fa-zh")

wav_file = f"{model.model_path}/example/asr_example.wav"
text_file = f"{model.model_path}/example/text.txt"
res = model.generate(input=(wav_file, text_file), data_type=("sound", "text"))
print(res)
```
更多([示例](https://github.com/alibaba-damo-academy/FunASR/tree/main/examples/industrial_data_pretraining))

<a name="核心功能"></a>
## 模型训练与测试

### 快速开始

命令行执行(用于快速测试,不推荐):
```shell
funasr-train ++model=paraformer-zh ++train_data_set_list=data/list/train.jsonl ++valid_data_set_list=data/list/val.jsonl ++output_dir="./outputs" &> log.txt &
```

python代码执行(可以多机多卡,推荐)

```shell
cd examples/industrial_data_pretraining/paraformer
bash finetune.sh
# "log_file: ./outputs/log.txt"
```
详细完整的脚本参考 [finetune.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/examples/industrial_data_pretraining/paraformer/finetune.sh)

### 详细参数介绍

```shell
funasr/bin/train.py \
++model="${model_name_or_model_dir}" \
++train_data_set_list="${train_data}" \
++valid_data_set_list="${val_data}" \
++dataset_conf.batch_size=20000 \
++dataset_conf.batch_type="token" \
++dataset_conf.num_workers=4 \
++train_conf.max_epoch=50 \
++train_conf.log_interval=1 \
++train_conf.resume=false \
++train_conf.validate_interval=2000 \
++train_conf.save_checkpoint_interval=2000 \
++train_conf.keep_nbest_models=20 \
++train_conf.avg_nbest_model=10 \
++optim_conf.lr=0.0002 \
++output_dir="${output_dir}" &> ${log_file}
```

- `model`(str):模型名字(模型仓库中的ID),此时脚本会自动下载模型到本地;或者本地已经下载好的模型路径。
- `train_data_set_list`(str):训练数据路径,默认为jsonl格式,具体参考([例子](https://github.com/alibaba-damo-academy/FunASR/blob/main/data/list))。
- `valid_data_set_list`(str):验证数据路径,默认为jsonl格式,具体参考([例子](https://github.com/alibaba-damo-academy/FunASR/blob/main/data/list))。
- `dataset_conf.batch_type`(str):`example`(默认),batch的类型。`example`表示按照固定数目batch_size个样本组batch;`length` or `token` 表示动态组batch,batch总长度或者token数为batch_size。
- `dataset_conf.batch_size`(int):与 `batch_type` 搭配使用,当 `batch_type=example` 时,表示样本个数;当 `batch_type=length` 时,表示样本中长度,单位为fbank帧数(1帧10ms)或者文字token个数。
- `train_conf.max_epoch`(int):`100`(默认),训练总epoch数。
- `train_conf.log_interval`(int):`50`(默认),打印日志间隔step数。
- `train_conf.resume`(int):`True`(默认),是否开启断点重训。
- `train_conf.validate_interval`(int):`5000`(默认),训练中做验证测试的间隔step数。
- `train_conf.save_checkpoint_interval`(int):`5000`(默认),训练中模型保存间隔step数。
- `train_conf.avg_keep_nbest_models_type`(str):`acc`(默认),保留nbest的标准为acc(越大越好)。`loss`表示,保留nbest的标准为loss(越小越好)。
- `train_conf.keep_nbest_models`(int):`500`(默认),保留最大多少个模型参数,配合 `avg_keep_nbest_models_type` 按照验证集 acc/loss 保留最佳的n个模型,其他删除,节约存储空间。
- `train_conf.avg_nbest_model`(int):`10`(默认),保留最大多少个模型参数,配合 `avg_keep_nbest_models_type` 按照验证集 acc/loss 对最佳的n个模型平均。
- `train_conf.accum_grad`(int):`1`(默认),梯度累积功能。
- `train_conf.grad_clip`(float):`10.0`(默认),梯度截断功能。
- `train_conf.use_fp16`(bool):`False`(默认),开启fp16训练,加快训练速度。
- `optim_conf.lr`(float):学习率。
- `output_dir`(str):模型保存路径。
- `**kwargs`(dict): 所有在`config.yaml`中参数,均可以直接在此处指定,例如,过滤20s以上长音频:`dataset_conf.max_token_length=2000`,单位为音频fbank帧数(1帧10ms)或者文字token个数。

#### 多gpu训练
##### 单机多gpu训练
```shell
export CUDA_VISIBLE_DEVICES="0,1"
gpu_num=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')

torchrun --nnodes 1 --nproc_per_node ${gpu_num} --master_port 12345 \
../../../funasr/bin/train.py ${train_args}
```
--nnodes 表示参与的节点总数,--nproc_per_node 表示每个节点上运行的进程数,--master_port 表示端口号

##### 多机多gpu训练

在主节点上,假设IP为192.168.1.1,端口为12345,使用的是2个GPU,则运行如下命令:
```shell
export CUDA_VISIBLE_DEVICES="0,1"
gpu_num=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')

torchrun --nnodes 2 --node_rank 0 --nproc_per_node ${gpu_num} --master_addr 192.168.1.1 --master_port 12345 \
../../../funasr/bin/train.py ${train_args}
```
在从节点上(假设IP为192.168.1.2),你需要确保MASTER_ADDR和MASTER_PORT环境变量与主节点设置的一致,并运行同样的命令:
```shell
export CUDA_VISIBLE_DEVICES="0,1"
gpu_num=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')

torchrun --nnodes 2 --node_rank 1 --nproc_per_node ${gpu_num} --master_addr 192.168.1.1 --master_port 12345 \
../../../funasr/bin/train.py ${train_args}
```

--nnodes 表示参与的节点总数,--node_rank 表示当前节点id,--nproc_per_node 表示每个节点上运行的进程数(通常为gpu个数),--master_port 表示端口号

#### 准备数据

`jsonl`格式可以参考([例子](https://github.com/alibaba-damo-academy/FunASR/blob/main/data/list))。
可以用指令 `scp2jsonl` 从wav.scp与text.txt生成。wav.scp与text.txt准备过程如下:

`train_text.txt`

左边为数据唯一ID,需与`train_wav.scp`中的`ID`一一对应
右边为音频文件标注文本,格式如下:

```bash
ID0012W0013 当客户风险承受能力评估依据发生变化时
ID0012W0014 所有只要处理 data 不管你是做 machine learning 做 deep learning
ID0012W0015 he tried to think how it could be
```


`train_wav.scp`

左边为数据唯一ID,需与`train_text.txt`中的`ID`一一对应
右边为音频文件的路径,格式如下

```bash
BAC009S0764W0121 https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/BAC009S0764W0121.wav
BAC009S0916W0489 https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/BAC009S0916W0489.wav
ID0012W0015 https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_cn_en.wav
```

`生成指令`

```shell
# generate train.jsonl and val.jsonl from wav.scp and text.txt
scp2jsonl \
++scp_file_list='["../../../data/list/train_wav.scp", "../../../data/list/train_text.txt"]' \
++data_type_list='["source", "target"]' \
++jsonl_file_out="../../../data/list/train.jsonl"
```

(可选,非必需)如果需要从jsonl解析成wav.scp与text.txt,可以使用指令:

```shell
# generate wav.scp and text.txt from train.jsonl and val.jsonl
jsonl2scp \
++scp_file_list='["../../../data/list/train_wav.scp", "../../../data/list/train_text.txt"]' \
++data_type_list='["source", "target"]' \
++jsonl_file_in="../../../data/list/train.jsonl"
```

#### 查看训练日志

##### 查看实验log
```shell
tail log.txt
[2024-03-21 15:55:52,137][root][INFO] - train, rank: 3, epoch: 0/50, step: 6990/1, total step: 6990, (loss_avg_rank: 0.327), (loss_avg_epoch: 0.409), (ppl_avg_epoch: 1.506), (acc_avg_epoch: 0.795), (lr: 1.165e-04), [('loss_att', 0.259), ('acc', 0.825), ('loss_pre', 0.04), ('loss', 0.299), ('batch_size', 40)], {'data_load': '0.000', 'forward_time': '0.315', 'backward_time': '0.555', 'optim_time': '0.076', 'total_time': '0.947'}, GPU, memory: usage: 3.830 GB, peak: 18.357 GB, cache: 20.910 GB, cache_peak: 20.910 GB
[2024-03-21 15:55:52,139][root][INFO] - train, rank: 1, epoch: 0/50, step: 6990/1, total step: 6990, (loss_avg_rank: 0.334), (loss_avg_epoch: 0.409), (ppl_avg_epoch: 1.506), (acc_avg_epoch: 0.795), (lr: 1.165e-04), [('loss_att', 0.285), ('acc', 0.823), ('loss_pre', 0.046), ('loss', 0.331), ('batch_size', 36)], {'data_load': '0.000', 'forward_time': '0.334', 'backward_time': '0.536', 'optim_time': '0.077', 'total_time': '0.948'}, GPU, memory: usage: 3.943 GB, peak: 18.291 GB, cache: 19.619 GB, cache_peak: 19.619 GB
```
指标解释:
- `rank`:表示gpu id。
- `epoch`,`step`,`total step`:表示当前epoch,step,总step。
- `loss_avg_rank`:表示当前step,所有gpu平均loss。
- `loss/ppl/acc_avg_epoch`:表示当前epoch周期,截止当前step数时,总平均loss/ppl/acc。epoch结束时的最后一个step表示epoch总平均loss/ppl/acc,推荐使用acc指标。
- `lr`:当前step的学习率。
- `[('loss_att', 0.259), ('acc', 0.825), ('loss_pre', 0.04), ('loss', 0.299), ('batch_size', 40)]`:表示当前gpu id的具体数据。
- `total_time`:表示单个step总耗时。
- `GPU, memory`:分别表示,模型使用/峰值显存,模型+缓存使用/峰值显存。

##### tensorboard可视化
```bash
tensorboard --logdir /xxxx/FunASR/examples/industrial_data_pretraining/paraformer/outputs/log/tensorboard
```
浏览器中打开:http://localhost:6006/

### 训练后模型测试


#### 有configuration.json

假定,训练模型路径为:./model_dir,如果改目录下有生成configuration.json,只需要将 [上述模型推理方法](https://github.com/alibaba-damo-academy/FunASR/blob/main/examples/README_zh.md#%E6%A8%A1%E5%9E%8B%E6%8E%A8%E7%90%86) 中模型名字修改为模型路径即可

例如:

从shell推理
```shell
python -m funasr.bin.inference ++model="./model_dir" ++input=="${input}" ++output_dir="${output_dir}"
```
从python推理

```python
from funasr import AutoModel

model = AutoModel(model="./model_dir")

res = model.generate(input=wav_file)
print(res)
```

#### 无configuration.json时

如果模型路径中无configuration.json时,需要手动指定具体配置文件路径与模型路径

```shell
python -m funasr.bin.inference \
--config-path "${local_path}" \
--config-name "${config}" \
++init_param="${init_param}" \
++tokenizer_conf.token_list="${tokens}" \
++frontend_conf.cmvn_file="${cmvn_file}" \
++input="${input}" \
++output_dir="${output_dir}" \
++device="${device}"
```

参数介绍
- `config-path`:为实验中保存的 `config.yaml`,可以从实验输出目录中查找。
- `config-name`:配置文件名,一般为 `config.yaml`,支持yaml格式与json格式,例如 `config.json`
- `init_param`:需要测试的模型参数,一般为`model.pt`,可以自己选择具体的模型文件
- `tokenizer_conf.token_list`:词表文件路径,一般在 `config.yaml` 有指定,无需再手动指定,当 `config.yaml` 中路径不正确时,需要在此处手动指定。
- `frontend_conf.cmvn_file`:wav提取fbank中用到的cmvn文件,一般在 `config.yaml` 有指定,无需再手动指定,当 `config.yaml` 中路径不正确时,需要在此处手动指定。

其他参数同上,完整 [示例](https://github.com/alibaba-damo-academy/FunASR/blob/main/examples/industrial_data_pretraining/paraformer/infer_from_local.sh)


<a name="模型导出与测试"></a>
## 模型导出与测试
### 从命令行导出
```shell
funasr-export ++model=paraformer ++quantize=false
```

### 从Python导出
```python
from funasr import AutoModel

model = AutoModel(model="paraformer")

res = model.export(quantize=False)
```

### 测试ONNX
```python
# pip3 install -U funasr-onnx
from funasr_onnx import Paraformer
model_dir = "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
model = Paraformer(model_dir, batch_size=1, quantize=True)

wav_path = ['~/.cache/modelscope/hub/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav']

result = model(wav_path)
print(result)
```

更多例子请参考 [样例](https://github.com/alibaba-damo-academy/FunASR/tree/main/runtime/python/onnxruntime)