evaluate_PSNR_SSIM.m 4.83 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
% Multi-Stage Progressive Image Restoration
% Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Shao
% https://arxiv.org/abs/2102.02808

close all;clear all;

datasets = {'Test100', 'Rain100H', 'Rain100L', 'Test2800', 'Test1200'};
num_set = length(datasets);

psnr_alldatasets = 0;
ssim_alldatasets = 0;

tic

for idx_set = 1:num_set
    file_path = strcat('/MATLAB Drive/painter/derain/derain_inference_epoch14_100/', datasets{idx_set}, '/');
    gt_path = strcat('/MATLAB Drive/painter/derain/test/', datasets{idx_set}, '/target/');
    path_list = [dir(strcat(file_path,'*.jpg')); dir(strcat(file_path,'*.png'))];
    gt_list = [dir(strcat(gt_path,'*.jpg')); dir(strcat(gt_path,'*.png'))];
    img_num = length(path_list);

    total_psnr = 0;
    total_ssim = 0;
    if img_num > 0 
        for j = 1:img_num
           image_name = path_list(j).name;
           gt_name = gt_list(j).name;
           input = imread(strcat(file_path,image_name));
           gt = imread(strcat(gt_path, gt_name));
           ssim_val = compute_ssim(input, gt);
           psnr_val = compute_psnr(input, gt);
           total_ssim = total_ssim + ssim_val;
           total_psnr = total_psnr + psnr_val;
       end
    end
    qm_psnr = total_psnr / img_num;
    qm_ssim = total_ssim / img_num;

    fprintf('For %s dataset PSNR: %f SSIM: %f\n', datasets{idx_set}, qm_psnr, qm_ssim);

    psnr_alldatasets = psnr_alldatasets + qm_psnr;
    ssim_alldatasets = ssim_alldatasets + qm_ssim;
    
end

fprintf('For all datasets PSNR: %f SSIM: %f\n', psnr_alldatasets/num_set, ssim_alldatasets/num_set);

toc

function ssim_mean=compute_ssim(img1,img2)
    if size(img1, 3) == 3
        img1 = rgb2ycbcr(img1);
        img1 = img1(:, :, 1);
    end

    if size(img2, 3) == 3
        img2 = rgb2ycbcr(img2);
        img2 = img2(:, :, 1);
    end
    ssim_mean = SSIM_index(img1, img2);
end

function psnr=compute_psnr(img1,img2)
    if size(img1, 3) == 3
        img1 = rgb2ycbcr(img1);
        img1 = img1(:, :, 1);
    end

    if size(img2, 3) == 3
        img2 = rgb2ycbcr(img2);
        img2 = img2(:, :, 1);
    end

    imdff = double(img1) - double(img2);
    imdff = imdff(:);
    rmse = sqrt(mean(imdff.^2));
    psnr = 20*log10(255/rmse);

end

function [mssim, ssim_map] = SSIM_index(img1, img2, K, window, L)

if (nargin < 2 || nargin > 5)
   ssim_index = -Inf;
   ssim_map = -Inf;
   return;
end

if (size(img1) ~= size(img2))
   ssim_index = -Inf;
   ssim_map = -Inf;
   return;
end

[M N] = size(img1);

if (nargin == 2)
   if ((M < 11) || (N < 11))
	   ssim_index = -Inf;
	   ssim_map = -Inf;
      return
   end
   window = fspecial('gaussian', 11, 1.5);	%
   K(1) = 0.01;								      % default settings
   K(2) = 0.03;								      %
   L = 255;                                  %
end

if (nargin == 3)
   if ((M < 11) || (N < 11))
	   ssim_index = -Inf;
	   ssim_map = -Inf;
      return
   end
   window = fspecial('gaussian', 11, 1.5);
   L = 255;
   if (length(K) == 2)
      if (K(1) < 0 || K(2) < 0)
		   ssim_index = -Inf;
   		ssim_map = -Inf;
	   	return;
      end
   else
	   ssim_index = -Inf;
   	ssim_map = -Inf;
	   return;
   end
end

if (nargin == 4)
   [H W] = size(window);
   if ((H*W) < 4 || (H > M) || (W > N))
	   ssim_index = -Inf;
	   ssim_map = -Inf;
      return
   end
   L = 255;
   if (length(K) == 2)
      if (K(1) < 0 || K(2) < 0)
		   ssim_index = -Inf;
   		ssim_map = -Inf;
	   	return;
      end
   else
	   ssim_index = -Inf;
   	ssim_map = -Inf;
	   return;
   end
end

if (nargin == 5)
   [H W] = size(window);
   if ((H*W) < 4 || (H > M) || (W > N))
	   ssim_index = -Inf;
	   ssim_map = -Inf;
      return
   end
   if (length(K) == 2)
      if (K(1) < 0 || K(2) < 0)
		   ssim_index = -Inf;
   		ssim_map = -Inf;
	   	return;
      end
   else
	   ssim_index = -Inf;
   	ssim_map = -Inf;
	   return;
   end
end

C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
window = window/sum(sum(window));
img1 = double(img1);
img2 = double(img2);

mu1   = filter2(window, img1, 'valid');
mu2   = filter2(window, img2, 'valid');
mu1_sq = mu1.*mu1;
mu2_sq = mu2.*mu2;
mu1_mu2 = mu1.*mu2;
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;

if (C1 > 0 & C2 > 0)
   ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
   numerator1 = 2*mu1_mu2 + C1;
   numerator2 = 2*sigma12 + C2;
   denominator1 = mu1_sq + mu2_sq + C1;
   denominator2 = sigma1_sq + sigma2_sq + C2;
   ssim_map = ones(size(mu1));
   index = (denominator1.*denominator2 > 0);
   ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
   index = (denominator1 ~= 0) & (denominator2 == 0);
   ssim_map(index) = numerator1(index)./denominator1(index);
end

mssim = mean2(ssim_map);

end