generate_patches_SIDD.py 2.18 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# modified from uformer https://github.com/ZhendongWang6/Uformer
from glob import glob
from tqdm import tqdm
import numpy as np
import os
from natsort import natsorted
import cv2
from joblib import Parallel, delayed
import multiprocessing
import argparse

parser = argparse.ArgumentParser(description='Generate patches from Full Resolution images')
parser.add_argument('--src_dir', default='datasets/denoising/SIDD_Medium_Srgb/Data', type=str, help='Directory for full resolution images')
parser.add_argument('--tar_dir', default='datasets/denoising/sidd/train',type=str, help='Directory for image patches')
parser.add_argument('--ps', default=256, type=int, help='Image Patch Size')
parser.add_argument('--num_patches', default=300, type=int, help='Number of patches per image')
parser.add_argument('--num_cores', default=10, type=int, help='Number of CPU Cores')

args = parser.parse_args()

src = args.src_dir
tar = args.tar_dir
PS = args.ps
NUM_PATCHES = args.num_patches
NUM_CORES = args.num_cores

noisy_patchDir = os.path.join(tar, 'input')
clean_patchDir = os.path.join(tar, 'groundtruth')

if os.path.exists(tar):
    os.system("rm -r {}".format(tar))

os.makedirs(noisy_patchDir)
os.makedirs(clean_patchDir)

#get sorted folders
files = natsorted(glob(os.path.join(src, '*', '*.PNG')))

noisy_files, clean_files = [], []
for file_ in files:
    filename = os.path.split(file_)[-1]
    if 'GT' in filename:
        clean_files.append(file_)
    if 'NOISY' in filename:
        noisy_files.append(file_)

def save_files(i):
    noisy_file, clean_file = noisy_files[i], clean_files[i]
    noisy_img = cv2.imread(noisy_file)
    clean_img = cv2.imread(clean_file)

    H = noisy_img.shape[0]
    W = noisy_img.shape[1]
    for j in range(NUM_PATCHES):
        rr = np.random.randint(0, H - PS)
        cc = np.random.randint(0, W - PS)
        noisy_patch = noisy_img[rr:rr + PS, cc:cc + PS, :]
        clean_patch = clean_img[rr:rr + PS, cc:cc + PS, :]

        cv2.imwrite(os.path.join(noisy_patchDir, '{}_{}.png'.format(i+1,j+1)), noisy_patch)
        cv2.imwrite(os.path.join(clean_patchDir, '{}_{}.png'.format(i+1,j+1)), clean_patch)

Parallel(n_jobs=NUM_CORES)(delayed(save_files)(i) for i in tqdm(range(len(noisy_files))))