utils.py 9.04 KB
Newer Older
yangql's avatar
yangql committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import argparse
import traceback
from io import BytesIO
from pathlib import Path
from typing import Dict, List, Union
import os
import cv2
import numpy as np
import yaml
from onnxruntime import (
    GraphOptimizationLevel,
    InferenceSession,
    SessionOptions,
)
from PIL import Image, UnidentifiedImageError

root_dir = Path(__file__).resolve().parent
InputType = Union[str, np.ndarray, bytes, Path]

class OrtInferSession:
    def __init__(self, config):
        sess_opt = SessionOptions()
        sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_BASIC
        self._verify_model(config["model_path"])
        print(config["model_path"])
        self.session = InferenceSession(
            config["model_path"], sess_options=sess_opt, providers=['ROCMExecutionProvider']
        )

    def __call__(self, input_content: np.ndarray) -> np.ndarray:
        input_dict = dict(zip(self.get_input_names(), [input_content]))
        try:
            return self.session.run(self.get_output_names(), input_dict)
        except Exception as e:
            error_info = traceback.format_exc()
            raise ONNXRuntimeError(error_info) from e

    def get_input_names(
        self,
    ):
        return [v.name for v in self.session.get_inputs()]

    def get_output_names(
        self,
    ):
        return [v.name for v in self.session.get_outputs()]

    def get_character_list(self, key: str = "character"):
        return self.meta_dict[key].splitlines()

    def have_key(self, key: str = "character") -> bool:
        self.meta_dict = self.session.get_modelmeta().custom_metadata_map
        if key in self.meta_dict.keys():
            return True
        return False

    @staticmethod
    def _verify_model(model_path):
        model_path = Path(model_path)
        if not model_path.exists():
            raise FileNotFoundError(f"{model_path} does not exists.")
        if not model_path.is_file():
            raise FileExistsError(f"{model_path} is not a file.")

class ONNXRuntimeError(Exception):
    pass

class LoadImage:
    def __init__(
        self,
    ):
        pass

    def __call__(self, img: InputType) -> np.ndarray:
        if not isinstance(img, InputType.__args__):
            raise LoadImageError(
                f"The img type {type(img)} does not in {InputType.__args__}"
            )
        img = self.load_img(img)
        if img.ndim == 2:
            return cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

        if img.ndim == 3 and img.shape[2] == 4:
            return self.cvt_four_to_three(img)
        return img

    def load_img(self, img: InputType) -> np.ndarray:
        if isinstance(img, (str, Path)):
            self.verify_exist(img)
            try:
                img = np.array(Image.open(img))
                img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
            except UnidentifiedImageError as e:
                raise LoadImageError(f"cannot identify image file {img}") from e
            return img

        if isinstance(img, bytes):
            img = np.array(Image.open(BytesIO(img)))
            img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
            return img

        if isinstance(img, np.ndarray):
            return img

        raise LoadImageError(f"{type(img)} is not supported!")

    @staticmethod
    def cvt_four_to_three(img: np.ndarray) -> np.ndarray:
        """RGBA → RGB"""
        r, g, b, a = cv2.split(img)
        new_img = cv2.merge((b, g, r))

        not_a = cv2.bitwise_not(a)
        not_a = cv2.cvtColor(not_a, cv2.COLOR_GRAY2BGR)

        new_img = cv2.bitwise_and(new_img, new_img, mask=a)
        new_img = cv2.add(new_img, not_a)
        return new_img

    @staticmethod
    def verify_exist(file_path: Union[str, Path]):
        if not Path(file_path).exists():
            raise LoadImageError(f"{file_path} does not exist.")

class LoadImageError(Exception):
    pass

def read_yaml(yaml_path):
    with open(yaml_path, "rb") as f:
        data = yaml.load(f, Loader=yaml.Loader)
    return data

def concat_model_path(config):
    key = "model_path"
    config["Det"][key] = os.path.join(root_dir, config["Det"][key])
    config["Rec"][key] = str(root_dir / config["Rec"][key])
    config["Cls"][key] = str(root_dir / config["Cls"][key])
    return config

def init_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("-img", "--img_path", type=str, default=None, required=True)
    parser.add_argument("-p", "--print_cost", action="store_true", default=False)

    global_group = parser.add_argument_group(title="Global")
    global_group.add_argument("--text_score", type=float, default=0.5)
    global_group.add_argument("--use_angle_cls", type=bool, default=True)
    global_group.add_argument("--use_text_det", type=bool, default=True)
    global_group.add_argument("--print_verbose", type=bool, default=False)
    global_group.add_argument("--min_height", type=int, default=30)
    global_group.add_argument("--width_height_ratio", type=int, default=8)

    det_group = parser.add_argument_group(title="Det")

    det_group.add_argument("--det_model_path", type=str, default=None)
    det_group.add_argument("--det_limit_side_len", type=float, default=736)
    det_group.add_argument(
        "--det_limit_type", type=str, default="min", choices=["max", "min"]
    )
    det_group.add_argument("--det_thresh", type=float, default=0.3)
    det_group.add_argument("--det_box_thresh", type=float, default=0.5)
    det_group.add_argument("--det_unclip_ratio", type=float, default=1.6)
    det_group.add_argument("--det_use_dilation", type=bool, default=True)
    det_group.add_argument(
        "--det_score_mode", type=str, default="fast", choices=["slow", "fast"]
    )

    cls_group = parser.add_argument_group(title="Cls")
    cls_group.add_argument("--cls_model_path", type=str, default=None)
    cls_group.add_argument("--cls_image_shape", type=list, default=[3, 48, 192])
    cls_group.add_argument("--cls_label_list", type=list, default=["0", "180"])
    cls_group.add_argument("--cls_batch_num", type=int, default=6)
    cls_group.add_argument("--cls_thresh", type=float, default=0.9)

    rec_group = parser.add_argument_group(title="Rec")
    rec_group.add_argument("--rec_model_path", type=str, default=None)
    rec_group.add_argument("--rec_img_shape", type=list, default=[3, 48, 320])
    rec_group.add_argument("--rec_batch_num", type=int, default=6)

    args = parser.parse_args()
    return args


class UpdateParameters:
    def __init__(self) -> None:
        pass

    def parse_kwargs(self, **kwargs):
        global_dict, det_dict, cls_dict, rec_dict = {}, {}, {}, {}
        for k, v in kwargs.items():
            if k.startswith("det"):
                det_dict[k] = v
            elif k.startswith("cls"):
                cls_dict[k] = v
            elif k.startswith("rec"):
                rec_dict[k] = v
            else:
                global_dict[k] = v
        return global_dict, det_dict, cls_dict, rec_dict

    def __call__(self, config, **kwargs):
        global_dict, det_dict, cls_dict, rec_dict = self.parse_kwargs(**kwargs)
        new_config = {
            "Global": self.update_global_params(config["Global"], global_dict),
            "Det": self.update_det_params(config["Det"], det_dict),
            "Cls": self.update_cls_params(config["Cls"], cls_dict),
            "Rec": self.update_rec_params(config["Rec"], rec_dict),
        }
        return new_config

    def update_global_params(self, config, global_dict):
        if global_dict:
            config.update(global_dict)
        return config

    def update_det_params(self, config, det_dict):
        if not det_dict:
            return config

        det_dict = {k.split("det_")[1]: v for k, v in det_dict.items()}
        model_path = det_dict.get('model_path', None)
        if not model_path:
            det_dict["model_path"] = str(root_dir / config["model_path"])

        config.update(det_dict)
        return config

    def update_cls_params(self, config, cls_dict):
        if not cls_dict:
            return config

        need_remove_prefix = ["cls_label_list", "cls_model_path"]
        new_cls_dict = self.remove_prefix(cls_dict, 'cls_', need_remove_prefix)

        model_path = new_cls_dict.get('model_path', None)
        if model_path:
            new_cls_dict["model_path"] = str(root_dir / config["model_path"])

        config.update(new_cls_dict)
        return config

    def update_rec_params(self, config, rec_dict):
        if not rec_dict:
            return config

        need_remove_prefix = ["rec_model_path"]
        new_rec_dict = self.remove_prefix(rec_dict, 'rec_', need_remove_prefix)

        model_path = new_rec_dict.get('model_path', None)
        if not model_path:
            new_rec_dict["model_path"] = str(root_dir / config["model_path"])

        config.update(new_rec_dict)
        return config

    @staticmethod
    def remove_prefix(
        config: Dict[str, str], prefix: str, remove_params: List[str]
    ) -> Dict[str, str]:
        new_rec_dict = {}
        for k, v in config.items():
            if k in remove_params:
                k = k.split(prefix)[1]
            new_rec_dict[k] = v
        return new_rec_dict