rapid_ocr_api.py 6.82 KB
Newer Older
yangql's avatar
yangql committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import copy
import importlib
from pathlib import Path
from typing import Optional, Union
import cv2
import numpy as np
from .ch_ppocr_v2_cls import TextClassifier
from .ch_ppocr_v3_det import TextDetector
from .ch_ppocr_v3_rec import TextRecognizer
from .utils import LoadImage, UpdateParameters, concat_model_path, init_args, read_yaml

root_dir = Path(__file__).resolve().parent

class RapidOCR:
    def __init__(self, config_path: Optional[str] = None, **kwargs):
        if config_path is None:
            config_path = str(root_dir / "config.yaml")

        if not Path(config_path).exists():
            raise FileExistsError(f"{config_path} does not exist!")

        config = read_yaml(config_path)
        config = concat_model_path(config)

        if kwargs:
            updater = UpdateParameters()
            config = updater(config, **kwargs)

        global_config = config["Global"]
        self.print_verbose = global_config["print_verbose"]
        self.text_score = global_config["text_score"]
        self.min_height = global_config["min_height"]
        self.width_height_ratio = global_config["width_height_ratio"]

        self.use_text_det = config["Global"]["use_text_det"]
        if self.use_text_det:
            self.text_detector = TextDetector(config["Det"])

        self.text_recognizer = TextRecognizer(config["Rec"])

        self.use_angle_cls = config["Global"]["use_angle_cls"]
        if self.use_angle_cls:
            self.text_cls = TextClassifier(config["Cls"])

        self.load_img = LoadImage()

    def __call__(self, img_content: Union[str, np.ndarray, bytes, Path], **kwargs):
        if kwargs:
            box_thresh = kwargs.get("box_thresh", 0.5)
            unclip_ratio = kwargs.get("unclip_ratio", 1.6)
            text_score = kwargs.get("text_score", 0.5)

            self.text_detector.postprocess_op.box_thresh = box_thresh
            self.text_detector.postprocess_op.unclip_ratio = unclip_ratio
            self.text_score = text_score

        img = self.load_img(img_content)
        h, w = img.shape[:2]
        if self.width_height_ratio == -1:
            use_limit_ratio = False
        else:
            use_limit_ratio = w / h > self.width_height_ratio

        if not self.use_text_det or h <= self.min_height or use_limit_ratio:
            dt_boxes, img_crop_list = self.get_boxes_img_without_det(img, h, w)
            det_elapse = 0.0
        else:
            dt_boxes, det_elapse = self.text_detector(img)
            if dt_boxes is None or len(dt_boxes) < 1:
                return None, None

            if self.print_verbose:
                print(f"dt_boxes num: {len(dt_boxes)}, elapse: {det_elapse}")

            dt_boxes = self.sorted_boxes(dt_boxes)
            img_crop_list = self.get_crop_img_list(img, dt_boxes)

        cls_elapse = 0.0
        if self.use_angle_cls:
            img_crop_list, _, cls_elapse = self.text_cls(img_crop_list)

            if self.print_verbose:
                print(f"cls num: {len(img_crop_list)}, elapse: {cls_elapse}")

        rec_res, rec_elapse = self.text_recognizer(img_crop_list)
        if self.print_verbose:
            print(f"rec_res num: {len(rec_res)}, elapse: {rec_elapse}")

        filter_boxes, filter_rec_res = self.filter_boxes_rec_by_score(dt_boxes, rec_res)
        fina_result = [
            [dt.tolist(), rec[0], str(rec[1])]
            for dt, rec in zip(filter_boxes, filter_rec_res)
        ]
        if fina_result:
            return fina_result, [det_elapse, cls_elapse, rec_elapse]
        return None, None

    @staticmethod
    def init_module(module_name, class_name):
        module_part = importlib.import_module(module_name)
        return getattr(module_part, class_name)

    def get_boxes_img_without_det(self, img, h, w):
        x0, y0, x1, y1 = 0, 0, w, h
        dt_boxes = np.array([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
        dt_boxes = dt_boxes[np.newaxis, ...]
        img_crop_list = [img]
        return dt_boxes, img_crop_list

    def get_crop_img_list(self, img, dt_boxes):
        def get_rotate_crop_image(img, points):
            img_crop_width = int(
                max(
                    np.linalg.norm(points[0] - points[1]),
                    np.linalg.norm(points[2] - points[3]),
                )
            )
            img_crop_height = int(
                max(
                    np.linalg.norm(points[0] - points[3]),
                    np.linalg.norm(points[1] - points[2]),
                )
            )
            pts_std = np.float32(
                [
                    [0, 0],
                    [img_crop_width, 0],
                    [img_crop_width, img_crop_height],
                    [0, img_crop_height],
                ]
            )
            M = cv2.getPerspectiveTransform(points, pts_std)
            dst_img = cv2.warpPerspective(
                img,
                M,
                (img_crop_width, img_crop_height),
                borderMode=cv2.BORDER_REPLICATE,
                flags=cv2.INTER_CUBIC,
            )
            dst_img_height, dst_img_width = dst_img.shape[0:2]
            if dst_img_height * 1.0 / dst_img_width >= 1.5:
                dst_img = np.rot90(dst_img)
            return dst_img

        img_crop_list = []
        for box in dt_boxes:
            tmp_box = copy.deepcopy(box)
            img_crop = get_rotate_crop_image(img, tmp_box)
            img_crop_list.append(img_crop)
        return img_crop_list

    @staticmethod
    def sorted_boxes(dt_boxes):
        """
        Sort text boxes in order from top to bottom, left to right
        args:
            dt_boxes(array):detected text boxes with shape [4, 2]
        return:
            sorted boxes(array) with shape [4, 2]
        """
        num_boxes = dt_boxes.shape[0]
        sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
        _boxes = list(sorted_boxes)

        for i in range(num_boxes - 1):
            for j in range(i, -1, -1):
                if (
                    abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10
                    and _boxes[j + 1][0][0] < _boxes[j][0][0]
                ):
                    tmp = _boxes[j]
                    _boxes[j] = _boxes[j + 1]
                    _boxes[j + 1] = tmp
                else:
                    break
        return _boxes

    def filter_boxes_rec_by_score(self, dt_boxes, rec_res):
        filter_boxes, filter_rec_res = [], []
        for box, rec_reuslt in zip(dt_boxes, rec_res):
            text, score = rec_reuslt
            if score >= self.text_score:
                filter_boxes.append(box)
                filter_rec_res.append(rec_reuslt)
        return filter_boxes, filter_rec_res

def main():
    args = init_args()
    ocr_engine = RapidOCR(**vars(args))

    result, elapse_list = ocr_engine(args.img_path)
    print(result)
    if args.print_cost:
        print(elapse_list)

if __name__ == "__main__":
    main()