utility.cpp 13.2 KB
Newer Older
Your Name's avatar
Your Name committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <dirent.h>
#include <utility.h>
#include <iostream>
#include <ostream>

#include <vector>

#ifdef _WIN32
#include <direct.h>
#else
#include <sys/stat.h>
#endif

namespace migraphxSamples {

std::vector<std::string> Utility::ReadDict(const std::string &path) {
  std::ifstream in(path);
  std::string line;
  std::vector<std::string> m_vec;
  if (in) {
    while (getline(in, line)) {
      m_vec.push_back(line);
    }
  } else {
    std::cout << "no such label file: " << path << ", exit the program..."
              << std::endl;
    exit(1);
  }
  return m_vec;
}

void Utility::VisualizeBboxes(const cv::Mat &srcimg,
                              const std::vector<OCRPredictResult> &ocr_result,
                              const std::string &save_path) {
  cv::Mat img_vis;
  srcimg.copyTo(img_vis);
  for (int n = 0; n < ocr_result.size(); n++) {
    cv::Point rook_points[4];
    for (int m = 0; m < ocr_result[n].box.size(); m++) {
      rook_points[m] =
          cv::Point(int(ocr_result[n].box[m][0]), int(ocr_result[n].box[m][1]));
    }

    const cv::Point *ppt[1] = {rook_points};
    int npt[] = {4};
    cv::polylines(img_vis, ppt, npt, 1, 1, CV_RGB(0, 255, 0), 2, 8, 0);
  }

  cv::imwrite(save_path, img_vis);
  std::cout << "The detection visualized image saved in " + save_path
            << std::endl;
}

void Utility::VisualizeBboxes(const cv::Mat &srcimg,
                              const StructurePredictResult &structure_result,
                              const std::string &save_path) {
  cv::Mat img_vis;
  srcimg.copyTo(img_vis);
  img_vis = crop_image(img_vis, structure_result.box);
  for (int n = 0; n < structure_result.cell_box.size(); n++) {
    if (structure_result.cell_box[n].size() == 8) {
      cv::Point rook_points[4];
      for (int m = 0; m < structure_result.cell_box[n].size(); m += 2) {
        rook_points[m / 2] =
            cv::Point(int(structure_result.cell_box[n][m]),
                      int(structure_result.cell_box[n][m + 1]));
      }
      const cv::Point *ppt[1] = {rook_points};
      int npt[] = {4};
      cv::polylines(img_vis, ppt, npt, 1, 1, CV_RGB(0, 255, 0), 2, 8, 0);
    } else if (structure_result.cell_box[n].size() == 4) {
      cv::Point rook_points[2];
      rook_points[0] = cv::Point(int(structure_result.cell_box[n][0]),
                                 int(structure_result.cell_box[n][1]));
      rook_points[1] = cv::Point(int(structure_result.cell_box[n][2]),
                                 int(structure_result.cell_box[n][3]));
      cv::rectangle(img_vis, rook_points[0], rook_points[1], CV_RGB(0, 255, 0),
                    2, 8, 0);
    }
  }

  cv::imwrite(save_path, img_vis);
  std::cout << "The table visualized image saved in " + save_path << std::endl;
}

// list all files under a directory
void Utility::GetAllFiles(const char *dir_name,
                          std::vector<std::string> &all_inputs) {
  if (NULL == dir_name) {
    std::cout << " dir_name is null ! " << std::endl;
    return;
  }
  struct stat s;
  stat(dir_name, &s);
  if (!S_ISDIR(s.st_mode)) {
    std::cout << "dir_name is not a valid directory !" << std::endl;
    all_inputs.push_back(dir_name);
    return;
  } else {
    struct dirent *filename; // return value for readdir()
    DIR *dir;                // return value for opendir()
    dir = opendir(dir_name);
    if (NULL == dir) {
      std::cout << "Can not open dir " << dir_name << std::endl;
      return;
    }
    std::cout << "Successfully opened the dir !" << std::endl;
    while ((filename = readdir(dir)) != NULL) {
      if (strcmp(filename->d_name, ".") == 0 ||
          strcmp(filename->d_name, "..") == 0)
        continue;
      // img_dir + std::string("/") + all_inputs[0];
      all_inputs.push_back(dir_name + std::string("/") +
                           std::string(filename->d_name));
    }
  }
}

cv::Mat Utility::GetRotateCropImage(const cv::Mat &srcimage,
                                    std::vector<std::vector<int>> box) {
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

std::vector<int> Utility::argsort(const std::vector<float> &array) {
  const int array_len(array.size());
  std::vector<int> array_index(array_len, 0);
  for (int i = 0; i < array_len; ++i)
    array_index[i] = i;

  std::sort(
      array_index.begin(), array_index.end(),
      [&array](int pos1, int pos2) { return (array[pos1] < array[pos2]); });

  return array_index;
}

std::string Utility::basename(const std::string &filename) {
  if (filename.empty()) {
    return "";
  }

  auto len = filename.length();
  auto index = filename.find_last_of("/\\");

  if (index == std::string::npos) {
    return filename;
  }

  if (index + 1 >= len) {

    len--;
    index = filename.substr(0, len).find_last_of("/\\");

    if (len == 0) {
      return filename;
    }

    if (index == 0) {
      return filename.substr(1, len - 1);
    }

    if (index == std::string::npos) {
      return filename.substr(0, len);
    }

    return filename.substr(index + 1, len - index - 1);
  }

  return filename.substr(index + 1, len - index);
}

bool Utility::PathExists(const std::string &path) {
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif // !_WIN32
}

void Utility::CreateDir(const std::string &path) {
#ifdef _WIN32
  _mkdir(path.c_str());
#else
  mkdir(path.c_str(), 0777);
#endif // !_WIN32
}

void Utility::print_result(const std::vector<OCRPredictResult> &ocr_result) {
  for (int i = 0; i < ocr_result.size(); i++) {
    std::cout << i << "\t";
    // det
    std::vector<std::vector<int>> boxes = ocr_result[i].box;
    if (boxes.size() > 0) {
      std::cout << "det boxes: [";
      for (int n = 0; n < boxes.size(); n++) {
        std::cout << '[' << boxes[n][0] << ',' << boxes[n][1] << "]";
        if (n != boxes.size() - 1) {
          std::cout << ',';
        }
      }
      std::cout << "] ";
    }
    // rec
    if (ocr_result[i].score != -1.0) {
      std::cout << "rec text: " << ocr_result[i].text
                << " rec score: " << ocr_result[i].score << " ";
    }

    // cls
    if (ocr_result[i].cls_label != -1) {
      std::cout << "cls label: " << ocr_result[i].cls_label
                << " cls score: " << ocr_result[i].cls_score;
    }
    std::cout << std::endl;
  }
}

cv::Mat Utility::crop_image(cv::Mat &img, const std::vector<int> &box) {
  cv::Mat crop_im;
  int crop_x1 = std::max(0, box[0]);
  int crop_y1 = std::max(0, box[1]);
  int crop_x2 = std::min(img.cols - 1, box[2] - 1);
  int crop_y2 = std::min(img.rows - 1, box[3] - 1);

  crop_im = cv::Mat::zeros(box[3] - box[1], box[2] - box[0], 16);
  cv::Mat crop_im_window =
      crop_im(cv::Range(crop_y1 - box[1], crop_y2 + 1 - box[1]),
              cv::Range(crop_x1 - box[0], crop_x2 + 1 - box[0]));
  cv::Mat roi_img =
      img(cv::Range(crop_y1, crop_y2 + 1), cv::Range(crop_x1, crop_x2 + 1));
  crop_im_window += roi_img;
  return crop_im;
}

cv::Mat Utility::crop_image(cv::Mat &img, const std::vector<float> &box) {
  std::vector<int> box_int = {(int)box[0], (int)box[1], (int)box[2],
                              (int)box[3]};
  return crop_image(img, box_int);
}

void Utility::sorted_boxes(std::vector<OCRPredictResult> &ocr_result) {
  std::sort(ocr_result.begin(), ocr_result.end(), Utility::comparison_box);
  if (ocr_result.size() > 0) {
    for (int i = 0; i < ocr_result.size() - 1; i++) {
      for (int j = i; j > 0; j--) {
        if (abs(ocr_result[j + 1].box[0][1] - ocr_result[j].box[0][1]) < 10 &&
            (ocr_result[j + 1].box[0][0] < ocr_result[j].box[0][0])) {
          std::swap(ocr_result[i], ocr_result[i + 1]);
        }
      }
    }
  }
}

std::vector<int> Utility::xyxyxyxy2xyxy(std::vector<std::vector<int>> &box) {
  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));
  std::vector<int> box1(4, 0);
  box1[0] = left;
  box1[1] = top;
  box1[2] = right;
  box1[3] = bottom;
  return box1;
}

std::vector<int> Utility::xyxyxyxy2xyxy(std::vector<int> &box) {
  int x_collect[4] = {box[0], box[2], box[4], box[6]};
  int y_collect[4] = {box[1], box[3], box[5], box[7]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));
  std::vector<int> box1(4, 0);
  box1[0] = left;
  box1[1] = top;
  box1[2] = right;
  box1[3] = bottom;
  return box1;
}

float Utility::fast_exp(float x) {
  union {
    uint32_t i;
    float f;
  } v{};
  v.i = (1 << 23) * (1.4426950409 * x + 126.93490512f);
  return v.f;
}

std::vector<float>
Utility::activation_function_softmax(std::vector<float> &src) {
  int length = src.size();
  std::vector<float> dst;
  dst.resize(length);
  const float alpha = float(*std::max_element(&src[0], &src[0 + length]));
  float denominator{0};

  for (int i = 0; i < length; ++i) {
    dst[i] = fast_exp(src[i] - alpha);
    denominator += dst[i];
  }

  for (int i = 0; i < length; ++i) {
    dst[i] /= denominator;
  }
  return dst;
}

float Utility::iou(std::vector<int> &box1, std::vector<int> &box2) {
  int area1 = std::max(0, box1[2] - box1[0]) * std::max(0, box1[3] - box1[1]);
  int area2 = std::max(0, box2[2] - box2[0]) * std::max(0, box2[3] - box2[1]);

  // computing the sum_area
  int sum_area = area1 + area2;

  // find the each point of intersect rectangle
  int x1 = std::max(box1[0], box2[0]);
  int y1 = std::max(box1[1], box2[1]);
  int x2 = std::min(box1[2], box2[2]);
  int y2 = std::min(box1[3], box2[3]);

  // judge if there is an intersect
  if (y1 >= y2 || x1 >= x2) {
    return 0.0;
  } else {
    int intersect = (x2 - x1) * (y2 - y1);
    return intersect / (sum_area - intersect + 0.00000001);
  }
}

float Utility::iou(std::vector<float> &box1, std::vector<float> &box2) {
  float area1 = std::max((float)0.0, box1[2] - box1[0]) *
                std::max((float)0.0, box1[3] - box1[1]);
  float area2 = std::max((float)0.0, box2[2] - box2[0]) *
                std::max((float)0.0, box2[3] - box2[1]);

  // computing the sum_area
  float sum_area = area1 + area2;

  // find the each point of intersect rectangle
  float x1 = std::max(box1[0], box2[0]);
  float y1 = std::max(box1[1], box2[1]);
  float x2 = std::min(box1[2], box2[2]);
  float y2 = std::min(box1[3], box2[3]);

  // judge if there is an intersect
  if (y1 >= y2 || x1 >= x2) {
    return 0.0;
  } else {
    float intersect = (x2 - x1) * (y2 - y1);
    return intersect / (sum_area - intersect + 0.00000001);
  }
}

} // namespace migraphxSamples